The + operator in regular expressions is used in some books to denote one or more applications of Kleene star.Computer Science

Exercise 1: Regular Expressions........... 20 marks

Regular Expressions Syntax: The + operator in regular expressions is used in some books to denote one or more applications of Kleene star. However, in other places, such as JFLAP, + denotes the alternation operator, equivalent to  . For the purpose of this assignment, we follow JFLAP and use operator + to denote an alternation. In JFLAP, you can use λ or g to denote the empty string (see Preferences menu).

For parts (i) to (iii), please type each word on a new line. The notation wi wj denotes concatenation of words

wi and wj , and wr denotes the word obtained by reversing w.

(a) Let R1 = 1(1∗ + 2∗ )3∗ (2∗ + 3)1∗2(1 + 3)∗2∗ and R2 = 1∗3(2 + 3)∗2∗ (1 + 3)∗ (1 + 3)∗ be two regular expressions.

Whenever asked to provide words, these must be non-empty ones (and different if more than one).

  1. (2 marks) [E1-Qa1.txt] Give two non-empty words w1 and w2 such that {w1, w2} ⊆ L(R1) ∩ L(R2).

  2. (2 marks) [E1-Qa2.txt] Give two non-empty words w1 and w2 such that {w1, w2} ⊆ L(R1) L(R2).

  • (2 marks) [E1-Qa3.txt] Give two non-empty words w1 and w2 such that {w1, w2} ⊆ L(R2) L(R1).

  1. (1 mark) [E1-Qa4.txt] Give a non-empty word w ∈ L(R1) such that w wr ∈ L(R1).

  2. (1 mark) [E1-Qa5.txt] Give a non-empty word w ∈ L(R1) such that w wr g L(R1).

  3. (1 mark) [E1-Qa6.txt] Give a regular expression R such that L(R) = L(R1) ∪ L(R2).

  • (3 marks) [E1-Qa7.txt] Give a regular expression R such that L(R) = L(R1) ∩ L(R2).

(b) Give regular expressions for the following languages.

  1. (2 marks) [E1-Qb1.txt] L1 = {a3n+2bm+1 | n ≥ 1, m ≥ 0, m mod 2 = 1}.

    1. (2 marks) [E1-Qb2.txt] L2 = L1, where L is the complement of L (assume alphabet Σ = {a, b}).

  • (2 marks) [E1-Qb3.txt] L = {w | w ∈{a, b}∗, |w | mod 3 = 2}, where |w | denotes the length of w.

  1. (2 marks) [E1-Qb4.txt]

L = {bnw1 | n > 1, w1 ∈ (({a, c }∗ ∩ {a, b, c }∗ ) ({b}∗ ∪ {c }))} ∩ {w2c | w2 ∈ {a, b, c }∗}.

Exercise 2: Grammars............ 20 marks

  • Provide regular expressions for the following

    1. (3 marks) [E2-Qa1.txt] Give a regular expression R such that L(R) = L(G1), where G1 is:

S → AcB

A → ac   |  bC   |  g

B → baB   |  caB   |  D C  → bC   |  g

D → aD | b

  1. (3 marks) [E2-Qa2.txt] Give a regular expression R such that L(R) = L(G2), where G2 is:

S  → ACS   |  g

A → aA  |  bA  |  bB B → cB   |  g

C  → bcC   |  acC   |  D D → bD   |  g

  • (2 marks) [E2-Qa3.txt] Give a regular expression R such that L(R) = L(G1) ∪ L(G2).

  1. (2 marks) [E2-Qa4.txt] Give a regular expression R such that L(R) = L(G1) ∩ L(G2).

  • Let G3 = ({S }, {a, b}, Γ, S ) be a grammar, where the set of rules Γ is defined as follows:

S  → aSbSa S  → bSbSa S  → aSbSb S  → g

  1. (4 marks) [E2-Qb1.txt] Does there exist a regular expression R such that L(R) = L(G3)? If it exists, provide such R; otherwise, simply put 0.

  • Let L = {c2n−1amc3b2m+1an | n, m > 0}.

    1. (3 marks) [E2-Qc1.txt] Complete the following context-free grammar G such such L(G ) = L.

S → ccSa | < missing string >

A → aAbb | aBbb B → ccc

Provide the missing string as a single line in the given text file (e.g., if your response is xSSy, submit a file with a single line containing string "xSSy" (of course, without the quotes)).

  • (3 marks) [E2-Qc2.txt] Does there exist a regular expression, DFA, regular grammar or PDA over the alphabet Σ = a, b, c which is equivalent to the language L? (Answer the following question as a string of bits that translate to 1 for yes and 0 for no. For example, if your answer is “no, no, yes, no" give your response as 0010).

Exercise 3: Automata........ 25 marks

  • Answer the following questions based on the finite state automaton M1 present in the JFLAP file

FA-3.a.jK available in Assessments section of the course website. Assume alphabet Σ = {a, b, c, d, e, f }.

  1. (2 marks) [E3-Qa1.txt] Give four strings of length 4 accepted by M1. Please type each string on a new

  2. (2 marks) [E3-Qa2.txt] Give four strings of length 4 rejected by M1. Please type each string on a new

  • (4 marks) [E3-Qa3.txt] Give the language of this machine M1 as a regular

  1. (2 marks) [E3-Qa4.jff] Remove any redundant states from M1 and adjust the transitions Give your answer as a .jff JFLAP file.

  • (4 marks) [E3-Qa5.jff] Create an automaton M2 (deterministic or non-deterministic) such that it accepts the language L1 where L1 = L(M1) L (aca + aba + bab)∗ (a(ba)∗ + c∗a) . Your machine should not accept words that are not in this Give your answer in a .jff JFLAP file.

  • Let L1 = {w | w ∈ {0, 1}∗, w does not contain the substring 101101}.

    1. (4 marks) [E3-Qb1.jff] Give the DFA M3 where L(M3) = L1.

    2. (3 marks) [E3-Qb2.txt] Give the regular expression R such that L(R) = L1.

Notation x, A/X  means a transition where x is the input symbol being read, A is the symbol on top of the stack that is popped, and X  is the symbol pushed onto the stack. Here, λ stands for the “empty” input and g stands for the “empty” stack symbol. Acceptance is by final state and empty stack.

  1. (2 marks) [E3-Qc1.txt] Give 4 strings of length 11 over Σ that are accepted by PDA M4. Remember to type each string on a new

  2. (2 marks) [E3-Qc2.txt] Give 4 strings of length 11 over Σ that are rejected by PDA M4. Remember to type each string on a new

Attachments:

Instructions Files

Computer Science Experts

expert
Amit
Computer Science

50 Answers

expert
Eleanor Ken
Computer Science

62 Answers

View More Experts
Disclaimer

The ready solutions purchased from Library are already used solutions. Please do not submit them directly as it may lead to plagiarism. Once paid, the solution file download link will be sent to your provided email. Please either use them for learning purpose or re-write them in your own language. In case if you haven't get the email, do let us know via chat support.

Get Free Quote!

269 Experts Online