logo Use CA10RAM to get 10%* Discount.
Order Nowlogo

The block number hash of the block the address of the beneficiary to whom the mining rewards were given integer of the difficulty for this block the size of this block in bytes

INSTRUCTIONS TO CANDIDATES
ANSWER ALL QUESTIONS

DATASET SCHEMA - BLOCKS

number: The block number

hash: Hash of the block

miner: The address of the beneficiary to whom the mining rewards were given

difficulty: Integer of the difficulty for this block

size: The size of this block in bytes

gas_limit: The maximum gas allowed in this block

gas_used: The total used gas by all transactions in this block

timestamp: The timestamp for when the block was collated

transaction_count: The number of transactions in the block

DATASET SCHEMA - TRANSACTIONS

block_number: Block number where this transaction was in

from_address: Address of the sender

to_address: Address of the receiver. null when it is a contract creation transaction

value: Value transferred in Wei (the smallest denomination of ether)

gas: Gas provided by the sender

gas_price : Gas price provided by the sender in Wei

block_timestamp: Timestamp the associated block was registered at (effectively timestamp of the transaction)

DATASET SCHEMA - CONTRACTS

address: Address of the contract

is_erc20: Whether this contract is an ERC20 contract

is_erc721: Whether this contract is an ERC721 contract

block_number: Block number where this contract was created

DATASET SCHEMA - SCAMS.JSON

id: Unique ID for the reported scam

name: Name of the Scam

url: Hosting URL

coin: Currency the scam is attempting to gain

category: Category of scam - Phishing, Ransomware, Trust Trade, etc.

subcategory: Subdivisions of Category

description: Description of the scam provided by the reporter and datasource

addresses: List of known addresses associated with the scam

reporter: User/company who reported the scam first

ip: IP address of the reporter

status: If the scam is currently active, inactive or has been taken offline

0x11c058c3efbf53939fb6872b09a2b5cf2410a1e2c3f3c867664e43a626d878c0: {

    id: 81,

    name: "myetherwallet.us",

    url: "http://myetherwallet.us",

    coin: "ETH",

    category: "Phishing",

    subcategory: "MyEtherWallet",

    description: "did not 404.,MEW Deployed",

    addresses: [

        "0x11c058c3efbf53939fb6872b09a2b5cf2410a1e2c3f3c867664e43a626d878c0",

        "0x2dfe2e0522cc1f050edcc7a05213bb55bbb36884ec9468fc39eccc013c65b5e4",

        "0x1c6e3348a7ea72ffe6a384e51bd1f36ac1bcb4264f461889a318a3bb2251bf19"

    ],

    reporter: "MyCrypto",

    ip: "198.54.117.200",

    nameservers: [

        "dns102.registrar-servers.com",

        "dns101.registrar-servers.com"

    ],

    status: "Offline"

},

Evaluate the top 10 smart contracts by total Ether received. An outline of the subtasks required to extract this information is provided below, focusing on a MRJob based approach. This is, however, only one possibility, with several other viable ways of completing this assignment.

JOB 1 - INITIAL AGGREGATION

To workout which services are the most popular, you will first have to aggregate transactions to see how much each address within the user space has been involved in. You will want to aggregate value for addresses in the to_address field. 

JOB 2 - JOINING TRANSACTIONS/CONTRACTS AND FILTERING

Once you have obtained this aggregate of the transactions, the next step is to perform a repartition join between this aggregate and contracts. You will want to join the to_address field from the output of Job 1 with the address field of contracts

Secondly, in the reducer, if the address for a given aggregate from Job 1 was not present within contracts this should be filtered out as it is a user address and not a smart contract.

JOB 3 - TOP TEN

Finally, the third job will take as input the now filtered address aggregates and sort these via a top ten reducer

Related Questions

. Introgramming & Unix Fall 2018, CRN 44882, Oakland University Homework Assignment 6 - Using Arrays and Functions in C

DescriptionIn this final assignment, the students will demonstrate their ability to apply two ma

. The standard path finding involves finding the (shortest) path from an origin to a destination, typically on a map. This is an

Path finding involves finding a path from A to B. Typically we want the path to have certain properties,such as being the shortest or to avoid going t

. Develop a program to emulate a purchase transaction at a retail store. This program will have two classes, a LineItem class and a Transaction class. The LineItem class will represent an individual

Develop a program to emulate a purchase transaction at a retail store. Thisprogram will have two classes, a LineItem class and a Transaction class. Th

. SeaPort Project series For this set of projects for the course, we wish to simulate some of the aspects of a number of Sea Ports. Here are the classes and their instance variables we wish to define:

1 Project 1 Introduction - the SeaPort Project series For this set of projects for the course, we wish to simulate some of the aspects of a number of

. Project 2 Introduction - the SeaPort Project series For this set of projects for the course, we wish to simulate some of the aspects of a number of Sea Ports. Here are the classes and their instance variables we wish to define:

1 Project 2 Introduction - the SeaPort Project series For this set of projects for the course, we wish to simulate some of the aspects of a number of

Ask This Question To Be Solved By Our ExpertsGet A+ Grade Solution Guaranteed

expert
Um e HaniScience

945 Answers

Hire Me
expert
Muhammad Ali HaiderFinance

538 Answers

Hire Me
expert
Husnain SaeedComputer science

708 Answers

Hire Me
expert
Atharva PatilComputer science

827 Answers

Hire Me
June
January
February
March
April
May
June
July
August
September
October
November
December
2025
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
SunMonTueWedThuFriSat
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
00:00
00:30
01:00
01:30
02:00
02:30
03:00
03:30
04:00
04:30
05:00
05:30
06:00
06:30
07:00
07:30
08:00
08:30
09:00
09:30
10:00
10:30
11:00
11:30
12:00
12:30
13:00
13:30
14:00
14:30
15:00
15:30
16:00
16:30
17:00
17:30
18:00
18:30
19:00
19:30
20:00
20:30
21:00
21:30
22:00
22:30
23:00
23:30