logo Use CA10RAM to get 10%* Discount.
Order Nowlogo
(5/5)

In a nuclear reactor, heat is generated through the fission of uranium atoms.

INSTRUCTIONS TO CANDIDATES
ANSWER ALL QUESTIONS

rogramming for MSE: Final Project

In a nuclear reactor, heat is generated through the fission of uranium atoms. This is typically converted to electricity using steam turbines. Maximizing heat transfer between the fissile material (typically a uranium alloy) and the coolant is an important design consideration in reactor development. At the same time, care needs to be taken such that the fissile material is

contained and does not leak into the coolant or the rest of the reactor. Thus, the fissile material is typically encased in a cladding that functions as a barrier to fission product release. The encased fissile material is referred to as a fuel rod.

You have started working for a nuclear reactor company and for your first assignment, your boss has asked you to model the steady-state temperature profile within several fuel rod designs the

company is considering. These designs have been provided to you in the form of .json files

containing information such as the number of cladding layers, the thicknesses of those layers,

and the material properties of those layers. Your boss estimates that the fissile material will have an average temperature of 1500 K during operation.

 

Build a python script that, given a json file encoding system parameters, calculates the

steady-state temperature profile in the material system, determines the temperature of the coolant (water) that is to be expected from the system, and creates a visualization (plot) of the temperature profile. Perform these calculations for each of the configuration files included with the project file. Prepare a typed memo where you show and discuss the temperature profile of

each fuel rod configuration. Validate your calculations by comparing one of the calculated profiles with the experimental data provided by plotting them on top of each other - comment on the similarities and differences between your calculations and the experimental data. Next, propose a new fuel rod configuration that achieves a coolant temperature between 500-600 K, using a real material not included in the previous designs, with a cladding thickness less than 2mm thick. Plot the temperature profile of your proposed configuration and briefly explain how you came up with it. Write a few short conclusions from your investigation of heat transfer in fuel rods. Finally, write a paragraph on something you struggled with on this project and how you overcame it.

 

Your plots should be aesthetically pleasing, adhere to best practices, and informative. Spend time considering the best way to show this information such that someone unfamiliar with the project could quickly understand the plot. Also, remember that you are dealing with real quantities.

 

There is no length requirement for the memo, it need only be sufficient to convey the necessary information clearly and effectively. Write something that you will be proud of.

 

 

Supplementary Information

 

For this problem, you are calculating the temperature profile in a cylindrical object, which means that the cross-sectional area of the material changes with the radius. To make things easier, you only need to consider heat transfer in the radial direction; that is, along the r-direction.

 

A system at steady-state conditions is one that does not change with time, only position. Thus, the differential equations that typically describe dynamic systems can be reduced to algebraic relations. These can be found online or in a standard heat transfer textbook. We recommend

“Heat Transfer: A Practical Approach” by Cengel. A pdf version of the steady state heat transfer chapter has been included at the end of this document. At a minimum, you should probably skim sections 1-4.

Visualizing the problem and noting boundary conditions is an essential step in solving heat transfer calculations. An example fuel rod configuration is shown below.

This particular system can be thought of as a series of thermal resistances where each layer imposes some sort of resistance to the transport of heat. The thermal resistance equation for heat transfer by conduction in a cylinder along the r-direction is given by:

 

𝑅

𝑐𝑜𝑛𝑑

 

  𝑙𝑛(𝑟2/𝑟1) 2π𝐿 * 𝑘

 

 

refer to pages 146-147 of included pdf

 

The heat transfer rate for a given cylindrical layer can be found by the following equation:

 

𝑇 − 𝑇

 

𝑄 =

𝑐𝑜𝑛𝑑

 

     1 2  

𝑅

𝑐𝑜𝑛𝑑

 

refer to pages 146-147 of included pdf

 

 

 

 

Thus, the temperature profile as a function of r within an internal layer can be calculated by rearranging the terms of the previous equations to yield the following equation:

 

 

𝑇(𝑟) = 𝑇

𝑜

 

𝑙𝑛(𝑟/𝑟1) 2π𝐿 * 𝑘

 𝑐𝑜𝑛𝑑

 A few assumptins should be made to simplify this problem. First, assume that conduction is the only mode of heat transport in this system. Second, assume that the fluid in contact with the

surface of the fuel rod is moving slow enough that it forms an essentially stagnant film that heat can conduct through. This layer will be assumed to be 0.5 mm thick. The temperature at the edge of this film is the temperature you will calculate.

Since the fuel is at a single temperature, you need not include it in your calculations; simply set the starting temperature to your fuel temperature. However, it should be represented within your plots.

Final Project Checklist (Bare Minimum)

   Plotted temperature profiles for each fuel rod configuration file

   Steady-state coolant temperatures for each fuel rod configuration file    Comparison plot of fuel rod temperature profile with experimental data

   Temperature profile and configuration information of proposed fuel rod design

   Turn in your written memo, python code, and proposed configuration file in json format 

 

 

(5/5)
Attachments:

Related Questions

. Introgramming & Unix Fall 2018, CRN 44882, Oakland University Homework Assignment 6 - Using Arrays and Functions in C

DescriptionIn this final assignment, the students will demonstrate their ability to apply two ma

. The standard path finding involves finding the (shortest) path from an origin to a destination, typically on a map. This is an

Path finding involves finding a path from A to B. Typically we want the path to have certain properties,such as being the shortest or to avoid going t

. Develop a program to emulate a purchase transaction at a retail store. This program will have two classes, a LineItem class and a Transaction class. The LineItem class will represent an individual

Develop a program to emulate a purchase transaction at a retail store. Thisprogram will have two classes, a LineItem class and a Transaction class. Th

. SeaPort Project series For this set of projects for the course, we wish to simulate some of the aspects of a number of Sea Ports. Here are the classes and their instance variables we wish to define:

1 Project 1 Introduction - the SeaPort Project series For this set of projects for the course, we wish to simulate some of the aspects of a number of

. Project 2 Introduction - the SeaPort Project series For this set of projects for the course, we wish to simulate some of the aspects of a number of Sea Ports. Here are the classes and their instance variables we wish to define:

1 Project 2 Introduction - the SeaPort Project series For this set of projects for the course, we wish to simulate some of the aspects of a number of

Ask This Question To Be Solved By Our ExpertsGet A+ Grade Solution Guaranteed

expert
Um e HaniScience

901 Answers

Hire Me
expert
Muhammad Ali HaiderFinance

680 Answers

Hire Me
expert
Husnain SaeedComputer science

978 Answers

Hire Me
expert
Atharva PatilComputer science

578 Answers

Hire Me
June
January
February
March
April
May
June
July
August
September
October
November
December
2025
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
SunMonTueWedThuFriSat
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
00:00
00:30
01:00
01:30
02:00
02:30
03:00
03:30
04:00
04:30
05:00
05:30
06:00
06:30
07:00
07:30
08:00
08:30
09:00
09:30
10:00
10:30
11:00
11:30
12:00
12:30
13:00
13:30
14:00
14:30
15:00
15:30
16:00
16:30
17:00
17:30
18:00
18:30
19:00
19:30
20:00
20:30
21:00
21:30
22:00
22:30
23:00
23:30