logo Use CA10RAM to get 10%* Discount.
Order Nowlogo
(5/5)

Artificial intelligence and machine learning are frontiers in the technology field.

INSTRUCTIONS TO CANDIDATES
ANSWER ALL QUESTIONS

Artificial intelligence and machine learning are frontiers in the technology field. These areas are often used to address common problems that require difficult tools or skills. AI and ML professionals work with SQL, R, Python, and other tools specific to data science. Different algorithms are used to solve problems and choosing the correct algorithm can be challenging. This project will use Azure Machine Learning, which is a cloud-based service from Microsoft. Azure ML allows you to create and run experiments based on datasets and integrate custom code in SQL, R, or Python. 

 

Module 8: Your Own Analysis

 

Objectives

Develop your own analysis.

Predict the consumer reports rating on cereal based on the data given.

Scenario

Kaggle.com contains a variety of datasets for experimentation. One such dataset is the 80-cereals dataset. This dataset contains the consumer reports rating of several different cereals along with various data about the cereals. The dataset contains the following fields.

Content

Fields in the Dataset

Name: Name of cereal

mfr: Manufacturer of cereal

o A = American Home Food Products

o G = General Mills

o K = Kellogg’s

o N = Nabisco

o P = Post

o Q = Quaker Oats

o R = Ralston Purina

Type:

o Cold

o Hot

Calories: Calories per serving

Protein: Grams of protein

Fat: Grams of fat

Sodium: Grams of sodium (Note: The original data contains milligrams.)

Fiber: Grams of dietary fiber

Carbs: Grams of complex carbohydrates

Sugars: Grams of sugars

Potassium: Grams of potassium (Note: The original data contains milligrams.)

Vitamins: Vitamins and minerals: 0, 25, or 100, indicating the typical percentage of FDA recommended

Shelf: Display shelf (1, 2, or 3, counting from the floor)

Weight: Weight in ounces of one serving

Cups: Number of cups in one serving

Rating: A rating of the cereals

 

Create a new experiment in Azure Machine Learning and perform linear regression on the cereals.csv dataset. We are seeking to determine if we can predict the rating based on the above features. The ratings are based on nutrition and taste. Open the cereals.csv file and look through the data to familiarize yourself with the data. You will need to cleanse the data—are there any missing values? Any outliers? Do you need to make any fields categorical? You will also need to normalize the data. You will want to develop python visualizations (feel free to use the code we have used in previous examples to create a pairwise scatter plot). You may also want to focus on a few selected fields based on your visualizations (sugar, calories, fat, fiber, etc). Don’t forget to split the data into a training and test set. You will need to create a linear regression model, train the model, score the model, and then evaluate it. 

How accurate is your model? What is the R2 value?

Look at the python pairwise scatter plot. What features do you want to remove from the model? Continue iterating (removing features and adding them back in) and reviewing the evaluation results. Find the best R2 value you can. Try to get above 0.70. What features are good predictors of the cereal rating?

 

 

(5/5)
Attachments:

Related Questions

. Introgramming & Unix Fall 2018, CRN 44882, Oakland University Homework Assignment 6 - Using Arrays and Functions in C

DescriptionIn this final assignment, the students will demonstrate their ability to apply two ma

. The standard path finding involves finding the (shortest) path from an origin to a destination, typically on a map. This is an

Path finding involves finding a path from A to B. Typically we want the path to have certain properties,such as being the shortest or to avoid going t

. Develop a program to emulate a purchase transaction at a retail store. This program will have two classes, a LineItem class and a Transaction class. The LineItem class will represent an individual

Develop a program to emulate a purchase transaction at a retail store. Thisprogram will have two classes, a LineItem class and a Transaction class. Th

. SeaPort Project series For this set of projects for the course, we wish to simulate some of the aspects of a number of Sea Ports. Here are the classes and their instance variables we wish to define:

1 Project 1 Introduction - the SeaPort Project series For this set of projects for the course, we wish to simulate some of the aspects of a number of

. Project 2 Introduction - the SeaPort Project series For this set of projects for the course, we wish to simulate some of the aspects of a number of Sea Ports. Here are the classes and their instance variables we wish to define:

1 Project 2 Introduction - the SeaPort Project series For this set of projects for the course, we wish to simulate some of the aspects of a number of

Ask This Question To Be Solved By Our ExpertsGet A+ Grade Solution Guaranteed

expert
Um e HaniScience

876 Answers

Hire Me
expert
Muhammad Ali HaiderFinance

838 Answers

Hire Me
expert
Husnain SaeedComputer science

809 Answers

Hire Me
expert
Atharva PatilComputer science

812 Answers

Hire Me
April
January
February
March
April
May
June
July
August
September
October
November
December
2025
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
SunMonTueWedThuFriSat
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
00:00
00:30
01:00
01:30
02:00
02:30
03:00
03:30
04:00
04:30
05:00
05:30
06:00
06:30
07:00
07:30
08:00
08:30
09:00
09:30
10:00
10:30
11:00
11:30
12:00
12:30
13:00
13:30
14:00
14:30
15:00
15:30
16:00
16:30
17:00
17:30
18:00
18:30
19:00
19:30
20:00
20:30
21:00
21:30
22:00
22:30
23:00
23:30