logo Use CA10RAM to get 10%* Discount.
Order Nowlogo
(5/5)

Algorithms Homework 7 Modify Dijkstra’s algorithm to solve the problem. Give the complete pseudocode for your modified algorithm. Analyze the time taken by your algorithm. Argue why your algorithm is correct.

INSTRUCTIONS TO CANDIDATES
ANSWER ALL QUESTIONS

Help with Homework question 2 on the attached document. Due midnight CST  

 

Algorithms

Homework 7, due Wednesday, Nov 17, at 11:59 p.m.

Reading: CLRS 24.3, 24.5, 23.1, 23.2.

“HOMEWORK” exercises: submit on Gradescope by  

1. Suppose that, in the single-source shortest path problem in weighted graphs, we wish to find not just

any shortest (min-weight) path between a source vertex s and a vertex v, but among those, the shortest

(min-weight) path that has the fewest edges. Given a directed, edge-weighted graph G = (V, E) with

integer edge weights w(e) > 0 and a source vertex s ∈ V , give an O((V + E) lg V ) time algorithm to

find the shortest (min-weight) path from s to v with the fewest number of edges, for all v ∈ V . Assume

that G is in adjacency list format.

(a) (2 points) Briefly describe the basic idea of your algorithm.

(b) (5 points) Describe your algorithm in pseudocode. Comment your code.

(c) (2 points) Argue why your algorithm returns the correct answer.

(d) (1 point) Analyze the running time of your algorithm with reference to your pseudocode.

2. Given a directed graph G = (V, E) with non-negative edge weights w(e) ≥ 0 and two vertices s and t,

find the shortest path from s to t that has an even number of edges. Such a path need not be a simple

path, i.e. it may repeat vertices or edges.

(a) (5 points) Modify Dijkstra’s algorithm to solve the problem. Give the complete pseudocode for

your modified algorithm. Analyze the time taken by your algorithm. Argue why your algorithm is

correct.

(b) (5 points) Modify G = (V, E) into G0 = (V

0

, E0

), such that executing the original Dijkstra’s algorithm on G0

solves the problem. Explain clearly, using an example, how you would create G, and

how you would obtain the required distances. Analyze the time taken by your solution. Argue why

your algorithm is correct.

3. The following statements may or may not be correct. In each case, either prove it (if it is correct) or

give a counterexample (if it isnt correct). Always assume that the graph G = (V, E) is undirected and

connected. Do not assume that edge weights are distinct unless this is specifically stated.

(a) (1 point) If graph G has more than |V | − 1 edges, and there is a unique heaviest edge, then this

edge cannot be part of a minimum spanning tree.

(b) (2 points) If G has a cycle with a unique heaviest edge e, then e cannot be part of any MST.

(c) (1 point) Let e be any edge of minimum weight in G . Then e must be part of some MST.

(d) (2 points) If the lightest edge in a graph is unique, then it must be part of every MST.

(e) (2 points) If e is part of some MST of G , then it must be a lightest edge across some cut of G .

(f) (2 points) Prim’s algorithm works correctly when there are negative edges.

4. CLRS 23-1, page 638 as:

◦ Part (a): Prove that the MST (in this case) is unique, and give a counter example to show that the

second-best MST need not be unique. (2 points)

◦ Part (b) (2 points)

◦ Part (c) Give pseudocode for the algorithm. (3 points)

◦ Part (d). Give pseudocode for the algorithm. (3 points)

Page 2

(5/5)
Attachments:

Related Questions

. Introgramming & Unix Fall 2018, CRN 44882, Oakland University Homework Assignment 6 - Using Arrays and Functions in C

DescriptionIn this final assignment, the students will demonstrate their ability to apply two ma

. The standard path finding involves finding the (shortest) path from an origin to a destination, typically on a map. This is an

Path finding involves finding a path from A to B. Typically we want the path to have certain properties,such as being the shortest or to avoid going t

. Develop a program to emulate a purchase transaction at a retail store. This program will have two classes, a LineItem class and a Transaction class. The LineItem class will represent an individual

Develop a program to emulate a purchase transaction at a retail store. Thisprogram will have two classes, a LineItem class and a Transaction class. Th

. SeaPort Project series For this set of projects for the course, we wish to simulate some of the aspects of a number of Sea Ports. Here are the classes and their instance variables we wish to define:

1 Project 1 Introduction - the SeaPort Project series For this set of projects for the course, we wish to simulate some of the aspects of a number of

. Project 2 Introduction - the SeaPort Project series For this set of projects for the course, we wish to simulate some of the aspects of a number of Sea Ports. Here are the classes and their instance variables we wish to define:

1 Project 2 Introduction - the SeaPort Project series For this set of projects for the course, we wish to simulate some of the aspects of a number of

Ask This Question To Be Solved By Our ExpertsGet A+ Grade Solution Guaranteed

expert
Um e HaniScience

915 Answers

Hire Me
expert
Muhammad Ali HaiderFinance

756 Answers

Hire Me
expert
Husnain SaeedComputer science

700 Answers

Hire Me
expert
Atharva PatilComputer science

923 Answers

Hire Me
June
January
February
March
April
May
June
July
August
September
October
November
December
2025
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
SunMonTueWedThuFriSat
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
00:00
00:30
01:00
01:30
02:00
02:30
03:00
03:30
04:00
04:30
05:00
05:30
06:00
06:30
07:00
07:30
08:00
08:30
09:00
09:30
10:00
10:30
11:00
11:30
12:00
12:30
13:00
13:30
14:00
14:30
15:00
15:30
16:00
16:30
17:00
17:30
18:00
18:30
19:00
19:30
20:00
20:30
21:00
21:30
22:00
22:30
23:00
23:30