
The programming language is C. Please see below for the myfloat.c and myfloat.h file.

Your goal is to implement the binary representation of your `MyFloat`

data-structure.

Your floating point numbers will have at least 2 bits of exponent and at least 1 bit of
mantissa/fraction/significand. They will have a size of 16 or 32 bits. This will be called MyFloat.

Floating point numbers will be defined by a floating point definition that will describe:

-Size (16 or 32 bits)

-Sign bit (always 1 sign bit)

-Exponent (2 or more bits)

-Mantissa (1 or more bits)

The mantissa will always include 1 implicit bit that is not saved or written. Thus a mantissa of 0b001
is actually 0b1001. IEEE754 single precision float is 32 bits, 1 sign bit, 8 exponential bits, 23
mantissa bits (+1 implied).

Your floating point numbers will support: +0 and -0 -- where all bits are zero or just the sign bit , -inf
and +inf -- where all the exponent bits are 1 and the mantissa bits are 0

You have to represent `0`,`-0`, `1.0`, `-infinity`, `infinity`, and

handful of real numbers with your new float: `MyFloat`.

Zero is supposed to have all bits set to `0`.

Infinity is where the exponent has all bits set to `1` and the mantissa

is all set to `0`.

`1.0` will be represented by the exponent set to BIAS/2 (integer

division) (`pow(2.0,0)`).

The files `myfloat.h` and `myfloat.c` describe what needs to be

implemented for question 1 in great detail. Your goal is to implement

that functionality to represent a MyFloat.

Please review the headers of `myfloat.c` and `myfloat.h` as a more

in depth description of what is required is within those files.

Watch out for unwanted padding. To tightly pack structs add this line to the struct definition:

``` 

struct __attribute__((packed)) coolbear { char a; char b; }; // A tightly packed coolbear 

``` 


myfloat.c

/*

You must create a function called myfloat_zero() which returns

 a MyFloat representing 0 (positive 0).

 You must create a function called myfloat_one() which returns

 a MyFloat representing 1.0.

 You must create a function called myfloat_negative() that takes a

 MyFloat and returns an int:

 0 for positive,

 1 for negative.

 You must create a function called myfloat_exponent() that takes a

 MyFloat and returns just the exponent, as an int. This should be

 negative if the number is between 1 and -1. For infinity or

 negative infinity, it sould return INT_MAX. For 0.0 or -0.0, it

 should return INT_MIN.

 You must create a function called myfloat_mantissa() that takes a

 MyFloat and returns just the mantissa, as an int. This should be

 always be positive. You must include the implied bit.

 For 0.0, -0.0, infinity, or negative infinity, it should return 0.

 You must create a function called myfloat_set_negative() which:

 takes a POINTER to a MyFloat and an int,

 and changes ONLY the sign to match the value of the of the int.

 0 for positive,

 1 for negative.

 It must set the sign of the MyFloat being pointed to positive

 or negative as specified by the second argument.

 You must create a function called myfloat_set_exponent() which:

 takes a POINTER to a MyFloat and an int,

 and changes only the exponent to the value passed by the int.

 The int might be negative, so you still have to adjust for bias.

 You must create a function called myfloat_set_mantissa() which:

 takes a POINTER to a MyFloat and an int,

 and changes only the mantissa to the value passed by the int.

 The int will include all implied bits, so you will have to remove them.

 You must create a function called myfloat_equals() which:

 takes compares two MyFloat and returns true if they are exactly equal

 and false if they are not exactly equal.

*/

#include "myfloat.h"

/* */

myfloat.h

You must define SIGN_BITS, EXPONENT_BITS, and MANTISSA_BITS,

 MYFLOAT_BITS, MYFLOAT_BYTES, and BIAS.

 You must create a type called MyFloat.

 MyFloat must contain the sign last (in the most significant bit), then the exponent, then the
mantissa.

 sizeof(MyFloat) must be 4.

*/

/* */

#include

#define SIGN_BITS 1UL

#define EXPONENT_BITS 10UL

#define MANTISSA_BITS 21UL

#define MYFLOAT_BITS 32UL

#define MYFLOAT_BYTES 4

#define BIAS 511UL

/* */

MyFloat myfloat_zero();

MyFloat myfloat_one();

int myfloat_negative(MyFloat);

int myfloat_exponent(MyFloat);

int myfloat_mantissa(MyFloat);

void myfloat_set_negative(MyFloat *, int);

void myfloat_set_exponent(MyFloat *, int);

void myfloat_set_mantissa(MyFloat *, int);

bool myfloat_equals(MyFloat, MyFloat);

/* */

