
FIT2004 S1/2019: Assignment 3 questions

DEADLINE: Friday 10th May 2019 23:55:00 AEST
LATE SUBMISSION PENALTY: 20% penalty per day. Submitting after 5 days of
deadline, you will get 0. Even more, if you are late less than a day, you will also be penalized
accordingly. For special consideration, please complete and send the in-semester special

consideration form with appropriate supporting document before deadline to fit2004.

allcampuses-x@monash.edu.
PROGRAMMING CRITERIA: It is required that you implement this exercise strictly
using Python programming language (version should not be earlier than 3.5). This
practical work will be marked on the time, space complexity, coding standard and function-
ality of your program and your report analysis. If you do not follow the coding standard
or program design mentioned in the speci�cation, we will be penalized 20% of your total
marks.
SUBMISSION REQUIREMENT: You will submit a zipped �le (should be named as
studentId_A3.zip, e.g. if your student id is XXXX, the name of zipped �le must be
XXXX_A3.zip. Moreover, your zipped �le should be ONLY in .zip extension) containing
your Python program �le (named trie.py) as well as a PDF �le (named Report_A3.pdf).
The PDF �le must give the detail of your solution along with the worst-case space and
time complexity. Penalties will be applied if you fail to submit the PDF �le. The zipped
�le is to be submitted on Moodle before the deadline. Draft submission will be considered
as not-submitted and will not be marked. Also make sure that your zipped �le contains
only trie.py and Report_A3.pdf.
PLAGIARISM: The assignments will be checked for plagiarism using an advanced pla-
giarism detector. Last year, many students were detected by the plagiarism detector and
almost all got zero mark for the assignment and, as a result, many failed the unit. �Helping�
others is NOT ACCEPTED. Please do not share your solutions partially or/and completely
to others. If someone asks you for help, ask them to visit us during consultation hours for
help.

In assignment-3, you need to solve following two tasks.

Task 1: Querying a database

Input

Input is a text �le, named database.txt, containing N records: record index, identi�cation
number, �rst name, last name, phone number, and email address. In the input �le, every line is
an entry that represents the details of one person only. No two lines are identical, though some
�elds may be the same (e.g. same �rst name). The indices start at 0 and increase by 1 each
line, so they are unique. The identi�cation numbers are also all unique. Moreover, each piece
of information of a person is space-separated. Below is the example of the part of the large text
database database.txt

fit2004.allcampuses-x@monash.edu
fit2004.allcampuses-x@monash.edu


0 20876514 David Williams 0398764532 davwil@gmail.com

1 20876515 David Miller 0423567854 david1967@yahoo.com

2 20876526 Jonathan Squire 0399762314 jonie0107@bigpond.com.au

3 20876538 Zhongxian Shao 0459763457 shao1984@gmail.com

4 20876517 Davis Williamson 0496774832 dav67@gmail.com

Format of each line in the input:

Record_index Identification_no First_name Last_name Phone_number Email_address

In the input �le, record indices, identi�cation numbers and phone numbers are only integer.
Identi�cation numbers can have di�erent length. First name and last name contains only
English alphabets in both cases. Email address is the combination of alpha-numeric values
with 4 special characters: at(@), dot(.), hyphen(-) and underscore(_).
As mentioned earlier, each line contains only one person's information, therefore, the number
of lines in the input �le is N . The maximum length of a single record is M characters, so the
size of the input �le database.txt will be O(NM).

Functionality

In this task you will solve the following problem: given a �le of records and a query which
consists of two parameters, id_prefix and last_name_prefix to �nd the indices of all records
which have an identi�cation number (id) whose pre�x is id_prefix and a last name whose
pre�x is last_name_prefix.
To solve this problem, write a function query(filename, id_prefix, last_name_prefix).
This function �nds all records whose identi�cation numbers start with id_prefix and whose
last names start with last_name_prefix and returns a list of their indices (which are given in
the �rst column of the input �le). This list can be empty. This list does not have to be sorted,
it can be in any order.

Complexity requirement

In order to do this e�ciently, you will �rst construct appropriate TRIEs inside this function.
The construction of these tries should take, in total, O(T ) times where T is the number of
characters in all identi�cation numbers and all last names ((note that it does not include the
time complexity needed to read the input �le in O(NM)). The space complexity should be
O(T + NM). The queries should take O(k + l + nk + nl) times, where k is the length of
id_prefix, l is the length of last_name_prefix, nk is the number of records matching the
id_prefix and nl the number of records matching the last_name_prefix.

Task 2: Reverse substrings search

In this task, you will be given a long string of text. You need to �nd all substrings of length >
1 whose reverse also exists in the text (not necessarily at the same position).

2



For example, if the original text is �cabcdbadccc� then the output should be [[�ab�,1], [�ba�,5],
[�cd�,3], [�dc�,7], [�ccc�,8], [�cc�,8], [�cc�,9]]. Notice that "Palindromic" substrings are a special
case (eg �ccc�), where the string and its reverse exist at the same position.

You need to write a function reverseSubstrings(filename) which takes as input a �le-
name where the �le contains a single line containing only lowercase a-z characters. The function
returns a lists of lists, where each inner list will contain two values. The �rst value will be a
substring with length >1 whose reverse exists in the string, and the second value will be the
index of that substring in the input text. There is no order requirement for the output list, as
long as it contains all the correct values.

Complexity requirement:

The function should run in O(K2 +P ), where K is the total number of characters in the input
string and P is the total length of all substrings whose reverse appears in the string. The space
complexity should be O(K2 + P ).

Output

The output/display of your program will be as below:

TASK-1:

---------------------------------------------------------------------

Enter the file name of the query database : database.txt

Enter the prefix of the identification number: 2087651

Enter the prefix of the last name : Wil

---------------------------------------------------------------------

2 record found

Index number : 0

Index number : 4

---------------------------------------------------------------------

TASK-2:

Enter the file name for searching reverse substring: string.txt

---------------------------------------------------------------------

ab(1), ba(5), cd(3), dc(7), ccc(8), cc(8), cc(9)

---------------------------------------------------------------------

Program end

None of the above mentioned functions: query and reverseSubstrings will take input from
user or give output to user. Therefore, you will use if __name__ == ``__main__'' module to
take user input, to gives output and to call the above discussed functions to get desired result.
Keep in mind, this module should be written inside trie.py �le.

Comments and docstring in the code

You should use following docstring format for ALL FUNCTIONS in your program:

def function name([parameters]):

```

3



Functionality of the function

Time complexity: Best:

Worst:

Space complexity: Best:

Worst:

Error handle:

Return:

Parameter:

Precondition:

'''

You can add line comments where required.

Crash prevention

It is the part of the assignment to make your program safe from any kind of crash/ interruption.
It is good to use all possible kind of exception handlers to save your program from being crashed/
interrupted. If your program crashed/ interrupted, the examiner/ assignment marker is not
obliged to resolve the issue and/ or to mark the assignment. In this case, you will receive zero.

Use of in-built functions and data structures

You must implement your own Trie and are NOT ALLOWED to use publicly available im-
plementations. Also, you are NOT ALLOWED to use Python dictionary (i.e., hash tables) or
linked lists for implementing Trie. You must use arrays (called lists in Python) to implement
the nodes of the Trie (as explained in the lecture slides).

-=o0o=-

END

-=o0o=-

4


