
Assignment 1-MapReduce Warm-up (20
points)

This assignment has three short coding problems. Please read the instructions carefully and submit all
required files on blackboard.

Problem 1- Processing Yelp Review Dataset (10 pts)
For this lab, you take a sample of the yelp review dataset, explained below and for each business id find the
number of reviews and the average stars given to that business id.

The data is made available to public by Yelp and is in JSON format. Please go to

https://www.yelp.com/dataset and click on “Download Dataset” then enter your name, email

address, and your initials, check agree to dataset license and click on Download. You will be redirected to
another page. Click on “Download JSON” to download the dataset. You can read the documentation of the

JSON dataset here: https://www.yelp.com/dataset/documentation/json . The file that you will

be using for this assignment is called review.json and it is about 3.6 GB compressed. This file contains a
sample of reviews given by users to each business and includes the business and user ids.

A JSON object is very similar to XML tag in that it consists of a set of attributes and their values. Below is an
example of a JSON object in review.json file. Each line of review.json contains a single JSON object (I pasted
each attribute in a separate line for readability here but in the dataset these are all in one line)

{
// string, 22 character unique review id
"review_id": "zdSx_SD6obEhz9VrW9uAWA",

// string, 22 character unique user id, maps to the user in user.json
"user_id": "Ha3iJu77CxlrFm-vQRs_8g",

// string, 22 character business id, maps to business in business.json
"business_id": "tnhfDv5Il8EaGSXZGiuQGg",

// integer, star rating
"stars": 4,

// string, date formatted YYYY-MM-DD
"date": "2016-03-09",

…
}

To process json in java, you can add the following library in your pom.xml:

<dependency>

<groupId>org.json</groupId>

<artifactId>json</artifactId>

https://www.yelp.com/dataset
https://www.yelp.com/dataset/documentation/json

<version>20180130</version>

</dependency>

Then in your map function, you can create a json object and extract the attributes you want by calling the
method “get” on the json object. For example, you can extract the attribute “stars” in your map function as
follows (suppose that “value” is the value passed as argument to your map function):

JSONObject jsn= new JSONObject(value.toString());

int stars= (Integer)jsn.get(“stars”);

You can extract the other attributes you need in a similar fashion.

What you need to do:
You need to write a MapReduce program which takes review.json as input and for each business_id it outputs
the number of reviews that are given to that business id together with its average stars.

business_id average_stars review_count

You can first create a smaller sample of the review.json file and test your program on this sample. For
example, you can use the following unix shell command to copy the first 100K lines of the review.json in
another file called review_small.json and run your program locally on this sample:

head -100000 review.json >> review_sample.json

Once you are confident that your program works correctly on a smaller sample, right click on your project
folder on eclipse, click on export, and click on “runnable jar” to export your program as a runnable jar. The
reason we are exporting it as a runnable jar is because we would like to package the json library we used with
the jar file, that way all nodes running the map function will have access to that library.

Attention: You do not need to specify the name of your driver class in Hadoop jar command if your mapreduce
program is exported as a runnable jar. In that case you only need to specify the paths to your input and output
files. That is,

Hadoop jar <path to your runnable jar on local> <input path on

hdfs> <output path on hdfs>

Hint:
You can emit multiple attributes as a key from your map or reduce function by appending them together and
send them as a Text object. For example, if you want to send both A1 and A2 as key from your reducer, you
can emit new Text(A1+”,”+A2) as key.

What you need to submit:
1. The source code for your mapper, reducer, driver, and combiner. Please name your driver class as

YelpAverageStar.java

Problem 2—Increase the performance of your program for problem1
with a custom combiner (10 pts)

Modify your solution to problem 1 and use a custom combiner to increase the performance of your

MapReduce program (please refer to the lectures “more on MapReduce” slides 29-44). Run and debug your

program on a smaller data. Once you are sure that your program works correctly, copy the yelp review data

to hdfs, create a jar file and run the program on your three node yarn cluster. Once your job is completed,

record the job elapsed time and reduce shuffle size (the reduce shuffle size is printed on the terminal once

the job is completed. You can find the job elapsed in Yarn GUI, the application history). Then go back to your

program and comment the line for using the combiner and run your program again without combiner on the

cluster. Record the job elapsed time and the reduce shuffle size again. Does your program run faster when

using combiners? What is the reduce shuffle size with and without using a combiner?

What you need to submit:
1. The source code for your mapper, reducer, driver, and combiner. Please name your driver class as

YelpAverageReviewWithCombiner.java
2. A document which compares the shuffle size and elapsed time of the job with and without the

combiner.

Problem 3—Finding pair of Flights with maximum number of cancellation
per carrier(Optional +5 pts)

Description
If you want to get more practice with MapReduce and some extra points then this problem is for you. You are
given a large dataset of flight arrival and departure details for all commercial flights within the USA between
the years 1987-2000. The original dataset is about 5.5 GB and is extracted from here: stat-
computing.org/dataexpo/2009/the-data.html click on the link and download files 1987 to 2000 and copy them
in a folder on your virtual machine. You can name the folder anything you want, for example, flightdata. The
goal is to write a simple MapReduce programs to find which origin/destination pair had the most number of
cancelled flights for each unique carrier.

What is the format of the dataset and how can you access it?
Each file contains flight information for a particular year. For example 2000.csv contains all flight information
for year 2000.
Each file in the data folder consists of 29 columns. The descriptions of the columns are as follows:

 Name Description

1 Year 1987-2008

2 Month 1-12

3 DayofMonth 1-31

4 DayOfWeek 1 (Monday) - 7(Sunday)

5 DepTime actual departure time (local, hhmm)

6 CRSDepTime scheduled departure time (local, hhmm)

7 ArrTime actual arrival time (local, hhmm)

http://stat-computing.org/dataexpo/2009/

8 CRSArrTime scheduled arrival time (local, hhmm)

9 UniqueCarrier unique carriercode

10 FlightNum flight number

11 TailNum plane tail number

12 ActualElapsedTime in minute
13

CRSElapsedTime in minutes

14 AirTime in minutes

15 ArrDelay arrival delay, in minutes

16 DepDelay departure delay, in minutes

17 Origin origin IATA airport code

18 Dest destination IATA airport code

19 Distance in miles

20 TaxiIn taxi in time, inminutes

21 TaxiOut taxi out time inminutes

22 Cancelled was the flight cancelled? (0=false,
1=true)

23 CancellationCode reason for cancellation (A = carrier, B =
weather, C =NAS, D =security)

24 Diverted 1 = yes, 0 = no

25 CarrierDelay in minutes

26 WeatherDelay in minutes

27 NASDelay in minutes

28 SecurityDelay in minutes

29 LateAircraftDelay in minutes

http://stat-computing.org/dataexpo/2009/supplemental-data.html
http://stat-computing.org/dataexpo/2009/supplemental-data.html
http://stat-computing.org/dataexpo/2009/supplemental-data.html

Each line in a csv file corresponds to a flight. For example, a line of file 2000.csv could be as follows:

This means: the flight year=2000, month=1, day of month=28, day of week=5, departure time=16:47, etc.

Note: The first line in each comma-separated file contains column headers. In your map function you need to
check whether the line that you received as value is a header and if so do not emit anything for that line;
otherwise, extract the columns you need from the line.

What you need to do:

Write a MapReduce program which returns, for each unique carrier, the pair of (origin,destination) with the
maximum number of cancellation. Each line of your output must have the following format:

unique_carrier origin,destination_with_max_number_of_cancelled

number_cancellation

Run your program in standalone mode on smaller sample of data. For example, run it only for file 2000.csv .
You can download the file 2000.csv from the following URL:
http://stat-computing.org/dataexpo/2009/2000.csv.bz2

When I run my program for input file 2000.csv I get the following output:

AA ORD,DFW 838
AQ LIH,HNL 40
AS LAX,SEA 542
CO BOS,EWR 404
DL LGA,ATL 700
HP PHX,LAX 395
NW MSP,ORD 436
TW CID,STL 144
UA LAX,SFO 1965
US BOS,PHL 574
WN HOU,DAL 707
This means for American Airlines (AA), the flights from ORD to DFW had the maximum cancellation (They
were cancelled 838 times), etc.

Once you are confident that your program works correctly and produces the expected output, create a jar
and run your program on your yarn cluster.

You need to submit the following for this problem:

1. The source code for your Mapper, reducer, and driver class. (+4 pts) Please name your driver class
MaxCancelledFlights.java
AverageDelayMapper.java, AverageDelayReducer.java, and AverageDelayDriver.java

2. Explain whether the same class can be used for reducer and combiner (+1 pt)?

http://stat-computing.org/dataexpo/2009/2000.csv.bz2

Grading Rubric
Criteria Points

Problem1- Map function correctly extracts the
attributes needed for key and values and ignores
missing records

3

Problem1-Map function sends correct key-value
pair

2

Reducer correctly aggregates the values it receives
from the mapper

2

Reducers sends correct key-value pairs 3

Problem2- Map Function sends correct key-value
pairs

3

Problem2- custom combiner is written correctly and
correctly aggregates the data sent by each mapper.

4

Problem 2- Reduce function produces correct
output

3

Total 20

