
CMPSC 311 Fall 2019

Homework 7 C Programming -
Dictionary as ordered linked list
Due Wednesday 10/23/2019 11pm

This assignment you will define a few functions that can complete certain tasks.

Download hw7handout.tar

Use instructions similar to homework 2 to download hw7handout.tar file, copy it to w204
machine's 311 folder, use tar	xvf	command to unpack it to hw7handout folder.

Functions to implement

You are to implement four functions, see comments about what each function should do. We
recommend you implement them in the order given, from the easist countKeys to the hardest
addKey.

// count number of keys in a dict.
int countKeys(const dictNode *dict) {
 return 0;
}

// given a key, look up its corresponding value in the
// dictionary, returns -1 if the value is not in the dictionary.
// your search for key should end when the key in the next node
// is bigger than the lookup key or you reached the end of the
// list.
int lookupKey(const dictNode *dict, const char *key) {
 return -1;
}

// delete the node in a dict with given key, return the value of
// the deleted node if it was found, return -1 if it wasn't found.
int deleteKey(dictNode **dictPtr, const char *key) {
 return -1;
}

// given a key/value pair, first lookup the key in the dictionary,
// if it is already there, update the dictionary with the new
// value; if it is not in the dictionary, insert a new node into
// the dictionary, still make sure that the key is in alphabetical
// order.
// IMPORTANT: When creating a new node, make sure you dynamically

CMPSC 311 Fall 2019

// allocate memory to store a copy of the key in the memory. You
// may use strdup function. DO NOT STORE the input key from the
// argument directly into the node. There is no guarantee that key
// pointer's value will stay the same.
// YOU MUST KEEP THE ALPHABETICAL ORDER OF THE KEY in the dictionary.
void addKey(dictNode **dictPtr, const char *key, int value) {
 return;
}

Useful library functions

The following library functions would be helpful during your implementation. use the command

% man functionName

to learn more about how to use these library functions.

int strcmp(const char *s1, const char *s2);
char *strdup(const char *s);

void *malloc(size_t size);
void free(void *ptr);

	

Edit/Compile/Test your C code

1. Compile your code
Assuming you successfully copied and unpacked hw3handout.tar file in ~/311 folder on your
W204 account, the following command will help you compile the given C program. The
original tar file contains a complete C program that compiles and works.

cse-p204inst11.cse.psu.edu	160%	cd	~/311/hw7handout	
	
You use make command in the hw7handout folder to compile all the .c files to create an
executable called dict.

Make sure that make does not generate any error/warning messages while compiling
your C code. Any warning/error messages while compiling your code will result in a
zero for this assignment. You must address these warnings/errors and remove all
compiler warnings/error messages before you submit. To be safe, do the following
before you submit to ensure no warnings/errormessages were produced.
%make clean
%make

CMPSC 311 Fall 2019

2. Test your code

2.1 Testing with test functions provided in main.c

You start with code that contains functions that don't really do anything. If you test your code
by executing ./dict before implementing anything, it will fail assertion of the first test function.
When you successfully implemented all functions, your output should look like this:

cse-p204inst22.cse.psu.edu	106%	make		
gcc	-Wall	-Wuninitialized	-Og			-c	-o	main.o	main.c	
gcc	-Wall	-Wuninitialized	-Og			-c	-o	dict.o	dict.c	
gcc	-Wall	-Wuninitialized	-Og			-c	-o	dict_support.o	dict_support.c	
gcc	-Wall	-Wuninitialized	-Og	-o	dict	main.o	dict.o	dict_support.o		
cse-p204inst22.cse.psu.edu	107%	./dict	
passed	testCount	
passed	testLookup	
passed	testDelete	
passed	testAdd	

2.2 Testing with your own tests examples

If you managed to pass all the existing tests provided in main.c file, we recommend you to try
to write your own testing functions. Read examples in main.c to see how to create a list from
two arrays (using makeDict) and how to assert if your dict is identical as a dict described by
two arrays (using assertEqualDict). It might also be helpful to use displayDict to print out
what your dictionary looks like in your code. Just make sure that if you add any
printf/displayDict in dict.c's function definition during the debugging phase, take them out
before submitting.

3. Edit your code
Before you start, please make sure to write your name and email at the beginning of
dict.c code to replace Prof. Wang's name and email.

//	Author:	Yanling	Wang	
//	Email:	yuw17@psu.edu	

Edit your code in dict.c with vim and save it and repeat step 1/2 to compile and test your
code.

Always start with small changes before your compile and test your code.

