
CMPG-765/CMPT- 465 Neural Networks and Learning Systems

Homework-1

1. Design the Hebb function to calculate the weights for a given input/output mapping using the
Hebb rule in Matlab using the m-language or in C++. The Hebb function shall be robust, so it
shall not depend on the length of the input and the size of a learning set. Inputs and desired
outputs shall be transferred to the function as parameters. It shall return a weighting vector.
(undergrads - 50/100, graduates – 30/100)

2. Using the Hebb function, which you designed, apply the Hebbian learning rule to input/output
mappings described by all 16 Boolean functions of 2 variables. Test for each input/output
mapping whether the weights obtained by the Hebbian rule implement it or not.
(undergrads - 40/100, graduates – 30/100)

3. (Required for graduates and extra credit for undergrads). Using the Hebb function, which
you designed, apply the Hebbian learning rule to input/output mappings described by all 16
Boolean functions of 2 variables substituting their inputs
(1, -1)  (0.5, -0.3) and (-1, 1)  (-0.5, 0.7), but keeping inputs (1, 1) and (-1, -1) and all initial
function values. Test for each input/output mapping whether the weights obtained by the
Hebbian rule implement it or not.
(undergrads – 30 extra credit points, graduates – 30/100)

4. Write a brief report with your conclusions. A report should be strictly technical. I may mostly
consist of a table of functions, which you tested followed by the row (column) where it should
be marked whether a Hebbian weighting vector implements this function. (10/100)

5. Turn in your source code, a screen shot of its test run and your report.

Input/output mappings in the traditional alphabet {0, 1}

y1 y2 AND XOR OR NOR NXOR NAND
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

The same input/output mappings in the alphabet {1,-1} suitable for neurons and neural networks

x1 x2 AND XOR OR NOR NXOR NAND
1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1
-1 1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
-1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

