

CS4750/7750 HW #2 (20 points)

Fall 2019
Consider a 2-D 25-room vacuum-cleaner world as follows:

 The world is a 2-D grid with 5x5=25 rooms, as shown below. The agent knows

the environment and dirt distribution. This is a fully observable problem.

 The agent can choose to move left (Left), move right (Right), move up (UP), move

down (DOWN), suck up the dirt (Suck), or do nothing (NoOp). Clean rooms stay

clean. The agent can’t go outside the environment, i.e. the actions to bring the

agent outside the environment are not allowed.

 Performance measure:

a) 4 point for each cleaned up room (changing the room from dirty to clean)

b) -1 point for Left

c) -1.1 point for Right

d) -1.2 point for UP

e) -1.3 point for DOWN

f) -0.2 point for Suck

g) 0 point for NoOp action.

Over a lifetime of 10 time steps. Higher performance points are better.

(1,1) (1,2) (1,3) (1,4) (1,5)

(2,1) (2,2) …

(3,1) …

(4,1)

(5,1) (5,5)

In this programming assignment, you should implement the following 4 algorithms to solve

the 2-D 25-room vacuum-cleaner world problem:

a) uniform cost tree search, up to search tree depth 10,

b) uniform cost graph search, up to search tree depth 10,

c) depth-limited depth-first tree search, with depth limit 10,

d) depth-limited depth-first graph search,with depth limit 10.

Follow the Tree-Search and Graph-Search pseudocode in the lecture slides (copied below),

but removing the Goal-Test. You need to search the whole tree and return the best solution

found. Breaking ties of search nodes randomly.

function Tree-Search(problem, fringe) returns a solution, or failure

fringe = Insert(Make-Node(Initial-State[problem]), fringe)

loop do

if fringe is empty then return failure

node = Remove-Front(fringe)

if Goal-Test(problem,State(node)) then return node

fringe = InsertAll(Expand(node, problem), fringe)

end

function Graph-Search(problem, fringe) returns a solution, or failure

closed = an empty set

fringe = Insert(Make-Node(Initial-State[problem]), fringe)

loop do

if fringe is empty then return failure

node = Remove-Front(fringe)

if Goal-Test(problem,State[node]) then return node

if State[node] is not in closed then

add State[node] to closed

fringe = InsertAll(Expand(node, problem), fringe)

end

You may use any programming language for your implementation.

Test case #1: Initial vacuum cleaner location (3,2). Dirty squares: (1,1), (1,4), (1,5), (2,1),

(2,4), (2,5), (3,5), (4,1), (4,3), (5,1), (5,4), (5,5).

Test case #2: Initial vacuum cleaner location (3,3). Dirty squares: (1,1), (1,3), (2,4), (3,1),

(3,4), (4,1), (4,4), (5,1).

Your submission consists of two files:

1) A pdf file containing your team member names, a brief description of your cost

function used by your search algorithms and the implementation of your algorithms,

the programming language and hardware used in the experiment to solve the test

cases, and the results (program printouts) on the two test cases, which include the

following for each algorithm on each test case:

a. Print out the states of the first 5 search nodes in the order they would be

expanded.

b. Print out the best solution found (i.e., the sequence of moves) and the

corresponding performance point. Is it the optimal solution?

c. Print out the number of nodes expanded.

d. Print out CPU execution time in seconds.

2) A zip file containing your code with appropriate comments. You may use code

found on the Internet, but need to give credits.

You may form teams of up to 3 people. Only one person from each team needs to submit

for the whole team on Canvas.

