
CptS 122 – Data Structures

Programming Assignment 2: Digital Music Manager &
Doubly Linked Lists

– Part I

Assigned: Sunday, September 8, 2019
Due: Wednesday, September 18, 2019 by midnight

I. Learner Objectives:

At the conclusion of this programming assignment, participants should be able to:
o Design and implement a dynamic doubly linked list
o Allocate and de-allocate memory at runtime
o Manipulate links in a dynamic list
o Insert items into a dynamic linked list
o Delete items from a dynamic linked list
o Edit items in a dynamic linked list
o Traverse a dynamic linked list

II. Prerequisites:

Before starting this programming assignment, participants should be able to:
o Analyze a basic set of requirements for a problem
o Compose C language programs
o Create basic test cases for a program
o Apply arrays, strings, and pointers
o Summarize differences between array notation and pointer notation
o Apply pointer arithmetic
o Apply basic string handling library functions
o Define and implement structures in C
o Summarize the operations of a linked list

III. Overview & Requirements:

Many of us have large digital music collections that are not always very well
organized. It would be nice to have a program that would manipulate our music
collection based on attributes such as artist, album title, song title, genre, song
length, number times played, and rating. For this assignment you will write a basic
digital music manager (DMM).

Your DMM program must have a text-based interface which allows the user to select
from a main menu of options including: (1) load, (2) store, (3) display, (4) insert, (5)

delete, (6) edit, (7) sort, (8) rate, (9) play, (10) shuffle, and (11) exit. For Part I of
the assignment, you will only need to complete the main menu, (1) load, (2) store, (3)
display, (6) edit, (8) rate, (9) play, and (11) exit features. The other features will be
completed in the next part of the assignment.

o What must the main menu contain?
The main menu must display the following commands:

(1) load
(2) store
(3) display
(4) insert
(5) delete
(6) edit
(7) sort
(8) rate
(9) play
(10) shuffle
(11) exit

After a command is selected and completed, your program must display
the main menu again. This procedure will continue until the “exit” command is
selected.

o What must “load” do?
The “load” command must read all records from a file
called musicPlayList.csv attached to the assignment on blackboard into a
dynamic doubly linked list. The doubly linked list is considered the main playlist. As
each record is read from the file, it must be inserted at the front of the list.
Each record consists of the following attributes:

o Artist – a string
o Album title – a string
o Song title – a string
o Genre – a string
o Song length - a struct Duration type consisting of seconds and minutes,

both integers
o Number times played – an integer
o Rating – an integer (1 – 5)

Each attribute, in a single record, will be separated by a comma in the .csv (comma
separated values) file. This means that you will need to design an algorithm to extract
the required attributes for each record. Each field in each record will have a value.
You do not need to check for null or empty values.

You must define a struct called Record to represent the above attributes. Also, do
not forget that the Song Length must be represented by another struct
called Duration.

Duration is defined as follows:
o Minutes – an integer
o Seconds – an integer

Finally, each struct Node in the doubly linked list must be defined as follows:

o Data – a Record
o Pointer to the next node
o Pointer to the previous node

o What must “store” do?
The “store” command writes the current records, in the dynamic doubly linked list, to
the musicPlayList.csv file. The store will completely overwrite the previous
contents in the file.

o What must “display” do?
The “display” command prints records to the screen. This command must support two
methods, one of which is selected by the user:

1. Print all records.
2. Print all records that match an artist.

o What must “edit” do?
The “edit” command must allow the user to find a record in the list by artist. If there
are multiple records with the same artist, then your program must prompt the user
which one to edit. The user may modify all of the attributes in the record.

o What must “rate” do?
The “rate” command must allow the user to assign a value of 1 – 5 to a song; 1 is the
lowest rating and 5 is the highest rating. The rating will replace the previous rating.

o What must “play” do?
The “play” command must allow the user to select a song and must start “playing”
each song in order from the current song. “Playing” the song for this assignment
means displaying the contents of the record that represents the song for a short
period of time, clearing the screen and showing the next record in the list, etc. This
continues until all songs have been played.

o What must “exit” do?
The “exit” command saves the most recent list to the musicPlayList.csv file.
This command will completely overwrite the previous contents in the file.

IV. Logical Block Diagram

The logical block diagram for your doubly linked list should look like the following:

As you can see from the illustration a doubly linked list has a pointer to the next node
and the previous node in the list. The first node’s previous node pointer is always
NULL and the last node’s next pointer is always NULL. When you insert and delete
nodes from a doubly linked list, you must always carefully link the previous and next
pointers.

V. Submitting Assignments:

1. Must submit your assignment in a zip file through

blackboard.
2. Your project must contain at least one header file (a .h

file), two C source files (which must be .c files), and a local
copy of the .csv file.

3. Your project must build properly. The most points an
assignment can receive if it does not build properly is 65
out of 100.

VI. Grading Guidelines:

This assignment is worth 100 points. Your assignment will be evaluated based on a
successful compilation and adherence to the program requirements. We will grade
according to the following criteria:

o 5 pts – Appropriate top-down design, style, and commenting according to class

standards
o 4 pts – For correct definition of struct Record
o 2 pts – For correct definition of struct Duration
o 3 pts - For correct definition of struct Node
o 5 pts – For correctly displaying the main menu, getting the command from the

user, and executing the command
o 3 pts – For looping back to main menu after a command is executed

o 21 pts – For correctly constructing a doubly linked list, including:

o (6 pts) For correct implementation a makeNode() function, which allocates
space for a struct Node on the list, and initializes the node

o (9 pts) For correct implementation of insertFront() function, which
calls makeNode() and returns 1 for successfully allocating space for a
node; 0 otherwise

o (6 pts) For correct implementation of printList(), which visits each
node in the list and prints out the contents of the record

o 15 pts – Correct “load” command implementation
o (2 pts) For correctly opening musicPlayList.csv for mode “read”
o (6 pts) For correctly extracting each attribute from each record in the file
o (5 pts) For correctly using insertFront()
o (2 pts) For correctly closing musicPlayList.csv

o 13 pts – Correct “store” command implementation, which writes the records in the
list to the musicPlayList.csv file.

o (3 pts) For opening musicPlayList.csv for mode “write”.
o (10 pts) For correctly writing all the records in the list to the file,

maintaining the .csv format
o 7 pts – For correct “display” command implementation

o (2 pts) For displaying all records by using printList ()
o (5 pts) For searching for specific records based on artist and displaying

matching record - should be able to use the same search function as used in
the “edit” command

o 7 pts – Correct “edit” command implementation
o (2 pts) For searching for specific records based on artist – should be able to

use the same search function as used in the “display” command
o (5 pts) For editing the record specified by the user

o 3 pts – Correct “rate” command implementation
o 7 pts – Correct “play” command implementation

o (2 pts) For playing all songs in order until the end of the list
o (5 pts) For searching for specific song based on song title and playing all

songs until the end of the list has been reached
o 5 pts – Correct “exit” command implementation, which writes the records in the

list to the musicPlayList.csv file and exits the program.

