
1

Project 4

Introduction - the SeaPort Project series

For this set of projects for the course, we wish to simulate some of the aspects of a number of Sea Ports.

Here are the classes and their instance variables we wish to define:

 SeaPortProgram extends JFrame
o variables used by the GUI interface
o world: World

 Thing implement Comparable <Thing>
o index: int
o name: String
o parent: int

 World extends Thing
o ports: ArrayList <SeaPort>
o time: PortTime

 SeaPort extends Thing
o docks: ArrayList <Dock>
o que: ArrayList <Ship> // the list of ships waiting to dock
o ships: ArrayList <Ship> // a list of all the ships at this port
o persons: ArrayList <Person> // people with skills at this port

 Dock extends Thing
o ship: Ship

 Ship extends Thing
o arrivalTime, dockTime: PortTime
o draft, length, weight, width: double
o jobs: ArrayList <Job>

 PassengerShip extends Ship
o numberOfOccupiedRooms: int
o numberOfPassengers: int
o numberOfRooms: int

 CargoShip extends Ship
o cargoValue: double
o cargoVolume: double
o cargoWeight: double

 Person extends Thing
o skill: String

 Job extends Thing - optional till Projects 3 and 4
o duration: double
o requirements: ArrayList <String>

// should be some of the skills of the persons
 PortTime

o time: int

Eventually, in Projects 3 and 4, you will be asked to show the progress of the jobs using JProgressBar's.

2

Here's a very quick overview of all projects:

1. Read a data file, create the internal data structure, create a GUI to display the structure, and let
the user search the structure.

2. Sort the structure, use hash maps to create the structure more efficiently.
3. Create a thread for each job, cannot run until a ship has a dock, create a GUI to show the

progress of each job.
4. Simulate competing for resources (persons with particular skills) for each job.

Project 4 General Objectives

Project 4 - Concurrency

 Resource pools
o Threads competing for multiple resources

 Blocking threads
 Extending the GUI interface to visualize the resource pools and progress of the various threads.

 Documentation Requirements:

You should start working on a documentation file before you do anything else with these projects, and
fill in items as you go along. Leaving the documentation until the project is finished is not a good idea for
any number of reasons.

The documentation should include the following (graded) elements:

 Cover page (including name, date, project, your class information)
 Design

o including a UML class diagram
o classes, variables and methods: what they mean and why they are there
o tied to the requirements of the project

 User's Guide
o how would a user start and run your project
o any special features
o effective screen shots are welcome, but don't overdo this

 Test Plan
o do this BEFORE you code anything
o what do you EXPECT the project to do
o justification for various data files, for example

 Lessons Learned
o express yourself here
o a way to keep good memories of successes after hard work

3

Project 4 Specific Goals:

Extend project 3 to include making jobs wait until people with the resources required by the job are
available at the port.

Elaboration:

1. Reading Job specifications from a data file and adding the required resources to each Job
instance.

2. Resource pools - SeaPort.ArrayList <Person> list of persons with particular skills at each port,
treated as resource pools, along with supporting assignment to ships and jobs.

3. Job threads - using the resource pools and supporting the concept of blocking until required
resources are available before proceeding.

4. The Job threads should be efficient:
1. If the ship is at a dock and all the people with required skills are available, the job should

start.
2. Otherwise, the Job should not hold any resources if it cannot progress.
3. Use synchronization to avoid race conditions.
4. Each Job thread should hold any required synchronization locks for a very short period.
5. When a job is over, all the resources used by the job (the people) should be released

back to the port.
6. When all the jobs of a ship are done, the ship should depart the dock and if there are

any ships in the port que, one of then should should be assigned to the free dock, and
that ships jobs can now try to progress.

7. NOTE: If a job can never progress because the port doesn't have enough skills among all
the persons at the port, the program should report this and cancel the job.

5. GUI showing:
o Resources in pools - how many people with skill are currently available
o Thread progress, resources acquired, and resources requests still outstanding

Deliverables:

1. Java source code files
2. Data files used to test your program
3. Configuration files used
4. A well-written document including the following sections:

a. Design: including a UML class diagram showing the type of the class relationships
b. User's Guide: description of how to set up and run your application
c. Test Plan: sample input and expected results, and including test data and results, with

screen snapshots of some of your test cases
d. Optionally, Comments: design strengths and limitations, and suggestions for future

improvement and alternative approaches
e. Lessons Learned
f. Use one of the following formats: MS Word docx or PDF.

4

Your project is due by midnight, EST, on the day of the date posted in the class schedule. We do not
recommend staying up all night working on your project - it is so very easy to really mess up a project at
the last minute by working when one was overly tired.

Your instructor's policy on late projects applies to this project.

Submitted projects that show evidence of plagiarism will be handled in accordance with UMUC Policy
150.25 — Academic Dishonesty and Plagiarism.

Format:

The documentation describing and reflecting on your design and approach should be written using
Microsoft Word or PDF, and should be of reasonable length. The font size should be 12 point. The page
margins should be one inch. The paragraphs should be double spaced. All figures, tables, equations, and
references should be properly labeled and formatted using APA style.

Coding Hints:

 Code format: (See Google Java Style guide for specifics
(https://google.github.io/styleguide/javaguide.html))

o header comment block, including the following information in each source code file:
o file name
o date
o author
o purpose
o appropriate comments within the code
o appropriate variable and function names
o correct indentation

 Errors:
o code submitted should have no compilation or run-time errors

 Warnings:
o Your program should have no warnings
o Use the following compiler flag to show all warnings:

javac -Xlint *.java
o More about setting up IDE's to show warnings
o Generics - your code should use generic declarations appropriately, and to eliminate all

warnings
 Elegance:

o just the right amount of code
o effective use of existing classes in the JDK
o effective use of the class hierarchy, including features related to polymorphism.

 GUI notes:
o GUI should resize nicely
o DO NOT use the GUI editor/generators in an IDE (integrated development environment,

such as Netbeans and Eclipse)
o Do use JPanel, JFrame, JTextArea, JTextField, JButton, JLabel, JScrollPane

 panels on panels gives even more control of the display during resizing
 JTable and/or JTree for Projects 2, 3 and 4

http://sandsduchon.org/duchon/Musings/a/warnings.html

5

 Font using the following gives a nicer display for this program, setting for the
JTextArea jta:
 jta.setFont (new java.awt.Font ("Monospaced", 0, 12));

o GridLayout and BorderLayout - FlowLayout rarely resizes nicely
 GridBagLayout for extreme control over the displays
 you may wish to explore other layout managers

o ActionListener, ActionEvent - responding to JButton events
 Starting with JDK 8, lambda expression make defining listeners MUCH simpler.

See the example below, with jbr (read), jbd (display) and jbs (search) three
different JButtons.
jcb is a JComboBox <String> and jtf is a JTextField.
 jbr.addActionListener (e -> readFile());
 jbd.addActionListener (e -> displayCave ());
 jbs.addActionListener (e -> search ((String)(jcb.getSelectedItem()),
jtf.getText()));

o JFileChooser - select data file at run time
o JSplitPane - optional, but gives user even more control over display panels

Grading Rubric:

Attribute Meets Does not meet

Design 20 points
Contains just the right amount of
code.

Uses existing classes in the JDK
effectively.

Effectively uses of the class
hierarchy, including features
related to polymorphism.

GUI elements should be distinct
from the other classes in the
program.

0 points
Does not contain just the right amount
of code.

Does not use existing classes in the JDK
effectively.

Does not effectively use of the class
hierarchy, including features related to
polymorphism.

GUI elements are not distinct from the
other classes in the program.

Functionality 40 points
Contains no coding errors.

Contains no compile warnings.

Builds from previous projects.

Includes reading Job specifications
from a data file and adding the

0 points
Contains coding errors.

Contains compile warnings.

Does not build from previous projects.

Does not include reading Job
specifications from a data file and

6

required resources to each Job
instance.

Includes resource pools -
SeaPort.ArrayList <Person> list of
persons with particular skills at
each port, treated as resource
pools, along with supporting
assignment to ships and jobs.

Includes job threads - using the
resource pools and supporting the
concept of blocking until required
resources are available before
proceeding.

The Job threads should be efficient.

GUI shows resources in pools - how
many people with skill are currently
available and thread progress,
resources acquired, and resources
requests still outstanding.

adding the required resources to each
Job instance.

Does not include resource pools -
SeaPort.ArrayList <Person> list of
persons with particular skills at each
port, treated as resource pools, along
with supporting assignment to ships
and jobs.

Does not include job threads - using the
resource pools and supporting the
concept of blocking until required
resources are available before
proceeding.

The Job threads are not efficient.

GUI does not show resources in pools -
how many people with skill are
currently available and thread
progress, resources acquired, and
resources requests still outstanding.

Test Data 20 points
Tests the application using multiple
and varied test cases.

0 points
Does not test the application using
multiple and varied test cases.

Documentation and
submission

15 points
Source code files include header
comment block, including file
name, date, author, purpose,
appropriate comments within the
code, appropriate variable and
function names, correct
indentation.

Submission includes Java source
code files, Data files used to test
your program, Configuration files
used.

Documentation includes a UML
class diagram showing the type of
the class relationships.

0 points
Source code files do not include header
comment block, or include file name,
date, author, purpose, appropriate
comments within the code, appropriate
variable and function names, correct
indentation.

Submission does not include Java
source code files, Data files used to test
your program, Configuration files used.

Documentation does not include a UML
class diagram showing the type of the
class relationships.

Documentation does not include a
user's Guide describing of how to set
up and run your application.

7

Documentation includes a user's
Guide describing of how to set up
and run your application.

Documentation includes a test plan
with sample input and expected
results, test data and results and
screen snapshots of some of your
test cases.

Documentation includes Lessons
learned.

Documentation is in an acceptable
format.

Documentation does not include a test
plan with sample input and expected
results, test data and results and screen
snapshots of some of your test cases.

Documentation does not include
Lessons learned.

Documentation is not in an acceptable
format.

Documentation form,
grammar and spelling

5 points
Document is well-organized.

The font size should be 12 point.

 The page margins should be one
inch.

The paragraphs should be double
spaced.

All figures, tables, equations, and
references should be properly
labeled and formatted using APA
style.

The document should contain
minimal spelling and grammatical
errors.

0 points
Document is not well-organized.

The font size is not 12 point.

 The page margins are not one inch.

The paragraphs are not double spaced.

All figures, tables, equations, and
references are not properly labeled or
formatted using APA style.

The document should contains many
spelling and grammatical errors.

