
CS201c: Practice Lab 2
Instructor: Apurva Mudgal
Friday, 16th August 2019

1 Binary search trees using C++ templates

1. Read about how to use templates in C++.

2. Complete the following C++ templates for binary search tree:

template <typename T>

class Node {

private:

T x;

Node<T> *left; // left child

Node<T> *right; // right child

Node<T> *parent; // parent node

// any other augmented information

public:

//define suitable functions here

};

template <typename T>

class BST {

private:

Node<T> *root; // root node

int n; // total number of nodes

public:

// define suitable constructor, destructors, etc. here.

int search(T x); // search x in BST

int insert(T x); // insert x in BST

int remove(T x); // delete x from BST

// return k-th smallest data in the tree

T order_statistics(int k);

1



};

Here the operators <,>,==, <=, >=, ! = are overloaded for type T .

Define instances of above class templates for different data types T ,
and test that they work correctly.

2 Performance of binary search trees on randomly
ordered input

Without loss of generality, assume that the keys to be inserted in a BST are
1, 2, . . . , n. Let (σ(1), σ(2), . . . , σ(n)) be a random permutation of (1, 2, . . . , n)
(i.e., each of the n! permutations are equally likely to be σ).

Suppose we insert keys σ(1), σ(2), . . . , σ(n) in an empty binary search
tree in this order. Let Tσ be the resulting binary search tree.

Your objective is to experimentally estimate the average height of tree
Tσ. To be specific, let h(Tσ) be the height of tree Tσ. Then, average height

for a random permuation is

∑
σ
h(Tσ)

n! .

Note. (i) You can try n = 128, 256, . . . , 65536 (successive powers of 2).
For each n, you may generate K = 10000 permutations. Let height of binary
search trees for these permutations are h1, h2, . . . , hK . Then, average height
(of a random binary search tree) for n keys can be estimated by h1+h2+...+hK

K .
Plot this average height as a function of n. What do you observe?

Question: Can you conclude that if the elements to be inserted in a BST
are given beforehand, a good strategy is to randomly permute them before
constructing the BST?

2


