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Homework 2

Problem 1. Let p(x|wi) ∼ N (µi, σ
2) for a two-category one-dimensional problem with P (ω1) = P (ω2) =

1
2 .

(a) Show that the minimum probability of error is given by

Pe =
1√
2π

∫ ∞
a

e−u
2/2du

Where a = |µ1−µ2|
2σ .

(b) Use the inequality

Pe =
1√
2π

∫ ∞
a

e−t
2/2dt ≤ 1√

2πa
e−a

2/2

to show that Pe goes to zero as |µ1−µ2|
σ goes to infinity.

Problem 2. Consider a two-category classification problem in two dimensions with

p(x|ω1) ∼ N (0, I), p(x|ω2) ∼ N (

(
1
1

)
, I)

and P (ω1) = P (ω2) = 1
2 ,

(a) Calculate the Bayes decision boundary.

(b) Calculate the Bhattacharyya error bound.

(c) Repeat the above for the same prior probabilities, but

p(x|ω1) ∼ N (0,

(
2 0.5

0.5 2

)
), p(x|ω2) ∼ N (

(
1
1

)
,

(
5 4
4 5

)
)

Problem 3. Suppose that we have three categories in two dimensions with the following underlying
distributions:

• p(x|ω1) ∼ N (0, I)

• p(x|ω2) ∼ N (

(
1
1

)
, I)

• p(x|ω3) ∼ 1
2N (

(
0.5
0.5

)
, I) + 1

2N (

(
−0.5
0.5

)
, I)
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with P (ωi) = 1
3 , i = 1, 2, 3.

(a) By explicit calculation of posterior probabilities, classify the point x =

(
0.3
0.3

)
for minimum probability

of error.

(b) Suppose that for a particular test point the first feature is missing. That is, classify x =

(
∗

0.3

)
.

(c) Suppose that for a particular test point the second feature is missing. That is, classify x =

(
0.3
∗

)
.

(d) Repeat all of the above for x =

(
0.2
0.6

)
.

Problem 4. Consider two normal distributions with arbitrary but equal covariances. Prove that the Fisher
linear discriminant, for suitable threshold, can be derived from the negative of the log-likelihood ratio.

Problem 5. It is easy to see that the nearest-neighbor error rate P can equal the Bayes rate P ∗ if P ∗ = 0
(the best possibility) or if P ∗ = c−1

c (the worst possibility). One might ask whether or not there are problems
for which P = P ∗ when P ∗ is between these extremes.

(a) Show that the Bayes rate for the one-dimensional case where P (ωi) = 1
c and

p(x|ωi) =


1, 0 ≤ x ≤ cr

c−1
1, i ≤ x ≤ i+ 1− cr

c−1
0, elsewhere

(1)

is P ∗ = r.

(b) Show that for this case the nearest-neighbor rate is P = P ∗.

Problem 6. Prove that the computational complexity of the basic nearest-neighbor editing algorithm for
n points in d dimension is O(d3nb

d
2 c lnn).

Nearest-Neighbor Editing Algorithm

1: begin initialize j ← 0,D ← data set, n← #prototypes
2: construct the full Voronoi diagram of D
3: do j ← j + 1, for each prototype x

′
j

4: find the Voronoi neighbors of x
′
j

5: if any neighbor is not from the same class as x
′
j , then mark x

′
j

6: until j = n
7: discard all points that are not marked
8: construct the Voronoi diagram of the remaining (marked) prototypes
9: end
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Problem 7. Consider classifiers based on samples with priors P (ω1) = P (ω2) = 0.5 and the distributions

p(x|ω1) =

{
2x, 0 ≤ x ≤ 1

0, elsewhere
(2)

and

p(x|ω2) =

{
2− 2x, 0 ≤ x ≤ 1

0, elsewhere
(3)

(a) What is the Bayes decision rule and the Bayes classification error?

(b) Suppose we randomly select a single point ω1 and a single point from ω2, and create a nearest-neighbor
classifier. Suppose too we select a test point from one of the categories (ω1 for definiteness). Integrate
to find the expected error rate P2(e).

(c) Repeat with two training samples from each category and a single test point in order to find P2(e).

(d) Generalize to show that in general,

Pn(e) =
1

3
+

1

(n+ 1)(n+ 3)
+

1

2(n+ 2)(n+ 3)

Confirm this formula makes sense in the n = 1 case.

(e) Compare limn→∞ Pn(e) with the Bayes error.
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