
CSC242: Intro to AI
Project 2: Constraint Satisfaction

In this project, you will design and build a constraint satisfaction engine and demonstrate
it on a number of constraint satisfaction problems (CSPs).

Requirements

1. You must implement the Backtracking Search algorithm for constraint satisfaction
problems (AIMA 6.3 and Fig. 6.5). You must have a single method or function that
takes an instance of a CSP as argument and returns a solution (that is, a complete,
satisfying assignment to the variables of values from their respective domains).

2. You must implement the AC-3 algorithm (AIMA 6.2.2 and Fig. 6.3) for the inference
step of Backtracking Search. I would work on this this after I got the basic algorithm
working.

3. You must use your implementation to solve several CSPs described below. For
each problem, you must have a method or function that constructs and returns
an (or the) instance of the problem. You must pass the problem instance to your
solver and print the result.

4. Your program must make it obvious what is happening when we run it. At a min-
imum, it must print each problem before solving it, and it must print the solution.
Both of these must be readable. You may include additional information if you
think it is informative. If your program prints a lot of information (e.g., tracing),
make sure that this can be turned or or off without editing your code (e.g., using a
command-line argument).

Constraint Satisfaction Problems

You must demonstrate your CSP solver on all of the following problems:

1. The Australia Map Coloring problem (AIMA 6.1.1) as seen in class. This problem is
straightforward, only involves binary “not-equals” constraints, and is easy to solve.
You might also want to challenge yourself by creating a bigger instance of the
problem, for example using the map of the United States.

1



2. The Job Shop Scheduling problem (AIMA 6.1.2). As described in the book, this
problem requires variables whose domains are integers, so that you can do math
on them and compare their values. This problem uses discrete time steps and the
range of possible times is also limited, as described in the book.

3. The n-Queens problem (AIMA 3.2.1, pp. 71–72) as seen in class. I suggest that
you use the “complete state formulation” described in AIMA 4.1.1 (also seen in
class). But note that you aren’t doing heuristic search. You need to formulate the
problem as a CSP and then solve it with your solver(s). Your program must ask
the user for the value of n.

You could formulate the constraints for n-Queens using “not-equals”, but that will
be painful. I suggest that you implement a binary “not-attacking” constraint, where
“Xi not attacking Xj” is satisfied if the queen in column i is not attacking the queen
in column j. It’s easy to code this and, hint, it can be tested in constant time.

4. For demonstrating the AC-3 algorithm, create a simple CSP with two variables X
and Y and one constraint Y = X2. Solving the problem is easy and any solver will
do it. But to show the benefit of AC-3, be sure to show the domains after inference.

5. Also for use with AC-3, here’s a simple problem from Mackworth (1977) where the
term “arc consistency” and the AC-3 algorithm were introduced. There are four
variables, X1, . . . , X4. The domains of D1 and D2 are {a, b, c} and the domains
of D3, . . . , D5 are {a, b}. The constraints are that X1 < X3, X2 < X3, X4 < X3,
X5 < X3, and X4 < X5, where “<” means lexicographic (alphabetical) ordering.
Your program should be able to detect that this problem is inconsistent (has no
solution) without any search.

6. Optional: Cryptarithmetic problems as described in AIMA 6.1.3, pp. 206–207. Try
the following:

A

+ B

C D

A B

+ C D

E F G

T W O

+ T W O

F O U R

S E N D

+ M O R E

M O N E Y

Note that these problems require the AllDiff constraint, or some other way of saying
that the different letters (variables) are assigned different digits. Note also that the
first digit of a number may not be 0. Don’t be surprised if you can’t solve them
all—you should know why!

There are many other problems that you could try to solve with your solver(s). If you look
for problems online, just be careful that you don’t also look for code. . .

2



How to Succeed on this Project

Start by designing your data structures.

What are the elements of a constraint satisfaction problem? You should know. Turn them
into abstract classes or interfaces. Be sure to include a class or interface representing a
complete CSP (its name should probably be. . . I’ll let you guess). Your implementation
of the CSP algorithms will work off these abstract representations. Then you will create
concrete implementations of this abstract representation to represent specific CSPs.

Next: What are the key algorithms for solving CSPs, as described in the project require-
ments? Create one or more classes that implement the algorithm(s) using the abstract
representation of CSPs. That is, these methods should work on any CSP.

Implement the algorithms based on the AIMA pseudo-code. It is a very straightforward
mapping. You can even use the pseudo-code as comments for your code. If your code
doesn’t match the pseudo-code, you probably aren’t doing it right.

Next: Pick one of the required CSPs and implement the concrete classes that extend the
abstract classes or implement the abstract interfaces. That is, if the abstract specification
refers to Vogons and Demons and Carnivores, you will have a class extending or
implementing Vogon, one for Demon, and one for Carnivore. You may also have a
class extending or implementing the abstract representation of a CSP.

Next: You need to be able to create instances of that kind of CSP. That is, some code
must create the different elements (Vogons, Demons, Carnivores, etc.) and combine
them into an instance of a CSP. Some problems have only one instance. Some problems
may allow you to construct different instances. Regardless, you need clear constructors,
methods, or functions that create any necessary instances.

Repeat this last step for each of the required problems.

You should have good constructors for all your classes so that the relationships among
the parts are clear (and enforced by the Java compiler). If you’re not using Java, you’re
on your own but you must still use good object-oriented design.

Finally, write code that creates an instance of a problem and an instance of a solver, and
calls the solver to (try to) solve the problem. Your code should print out the initial state
of the problem and the solution (if any) in meaningful, informative ways. Having good
toString() methods will certainly help here.

3



Note the benefit of using a constraint satisfaction framework for solving problems. Once
you’ve written the abstract specification and implemented the solver(s), all you have
to do to solve a problem is write the concrete instantiation of the specification for that
problem. The solvers will (try to) solve all of them.

Project Submission

Your project submission MUST include the following:

1. A README.txt file or PDF document describing:

(a) Any collaborators (see below)
(b) How to build your project
(c) How to run your project’s program(s) to demonstrate that it/they meet the

requirements

2. All source code for your project. Eclipse projects must include the project set-
tings from the project folder. Non-Eclipse projects must include a Makefile or
shell script that will build the program per your instructions, or at least have those
instructions in your README.txt.

3. A completed copy of the submission form posted with the project description.
Projects without this will receive a grade of 0. If you cannot complete and save
a PDF form, submit a text file containing the questions and your (brief) answers.

Writeups other than the instructions in your README and your completed submission
form are not required.

We must be able to cut-and-paste from your documentation in order to build and run
your code. The easier you make this for us, the better grade your will be. It is your
job to make both the building and the running of programs easy and informative for your
users.

Programming Practice

Use good object-oriented design. No giant main methods or other unstructured chunks
of code. Comment your code liberally and clearly.

4



You may use Java, Python, or C/C++ for this project. I recommend that you use Java.
Any sample code we distribute will be in Java. Other languages (Haskell, Clojure, Lisp,
etc.) by arrangement with the TAs only.

You may not use any non-standard libraries. Python users: that includes things like
NumPy. Write your own code—you’ll learn more that way.

If you use Eclipse, make it clear how to run your program(s). Setup Build and Run config-
urations as necessary to make this easy for us. Eclipse projects with poor configuration
or inadequate instructions will receive a poor grade.

Python projects must use Python 3 (recent version, like 3.7.x). Mac users should note
that Apple ships version 2.7 with their machines so you will need to do something differ-
ent.

If you are using C or C++, you should use reasonable “object-oriented” design not a
mish-mash of giant functions. If you need a refresher on this, check out the C for Java
Programmers guide and tutorial. You must use “-std=c99 -Wall -Werror” and
have a clean report from valgrind. Projects that do not follow both of these guidelines
will receive a poor grade.

Late Policy

Late projects will not be accepted. Submit what you have by the deadline. If there are
extenuating circumstances, submit what you have before the deadline and then explain
yourself via email.

If you have a medical excuse (see the course syllabus), submit what you have and
explain yourself as soon as you are able.

Collaboration Policy

You will get the most out of this project if you write the code yourself.

That said, collaboration on the coding portion of projects is permitted, subject to the
following requirements:

5

http://www.cs.rochester.edu/u/ferguson/csc/c/c-for-java-programmers.pdf
http://www.cs.rochester.edu/u/ferguson/csc/c/c-for-java-programmers.pdf
http://www.cs.rochester.edu/u/ferguson/csc/c/tutorial/


• Groups of no more than 3 students, all currently taking CSC242.

• You must be able to explain anything you or your group submit, IN PERSON AT
ANY TIME, at the instructor’s or TA’s discretion.

• One member of the group should submit code on the group’s behalf in addition to
their writeup. Other group members should submit only a README indicating who
their collaborators are.

• All members of a collaborative group will get the same grade on the project.

Academic Honesty

Do not copy code from other students or from the Internet.

Avoid Github and StackOverflow completely for the duration of this course.

There is code out there for all these projects. You know it. We know it.

Posting homework and project solutions to public repositories on sites like GitHub is a vi-
olation of the University’s Academic Honesty Policy, Section V.B.2 “Giving Unauthorized
Aid.” Honestly, no prospective employer wants to see your coursework. Make a great
project outside of class and share that instead to show off your chops.

References

Mackworth, A. K. (1977). Consistency in Networks of Relations. Artificial Intelligence 8,
99-118.

6


