
CptS 122- Data Structures

Programming Assignment 4: Basic Fitness Application in C++

Assigned: Thursday, October 3, 2019
Due: Friday, October 18, 2019 by midnight

I. Learner Objectives:

At the conclusion of this programming assignment, participants should be able to:

• Design, implement and test classes in C++

• Declare and define constructors

• Declare and define destructors

• Compare and contrast public and private access specifiers in C++

• Describe what is an attribute or data member of a class

• Describe what is a method of a class

• Apply and implement overloaded functions

• Apply and implement overloaded operators (stream insertion and stream
extraction)

• Distinguish between pass-by-value and pass-by-reference

• Discuss classes versus objects

• Apply basic file operations on file streams

II. Prerequisites:

Before starting this programming assignment, participants should be able to:

• Analyze a basic set of requirements for a problem

• Compose basic C++ language programs

• Create basic test cases for a program

• Apply arrays, strings, and pointers

III. Overview & Requirements:

You are to write a basic fitness application, in C++, that allows the user of the
application to manually edit “diet” and “exercise” plans. For this application you will
need to create three classes: DietPlan, ExercisePlan, and FitnessAppWrapper.

Diet Plan Attributes:

The class DietPlan is used to represent a daily diet plan. Your class must include three
data members to represent:

1. your goal_calories (an integer): maximum intake of calories for a day.
2. plan name (a string).
3. date for which the plan is intended (a string).

Exercise Plan Attributes:

The class ExercisePlan is used to represent a daily exercise plan. Your class must include
three data members to represent:

1. your goal_steps (an integer): the number of desired steps for a day.
2. plan name (a string).
3. date for which the plan is intended (a string).

Diet and Exercise Plan Operations:

Both the DietPlan and ExercisePlan should provide several member functions including:
a constructor, copy constructor, and destructor.

Remember that you will have to think about other appropriate member functions (think
about setter and getter functions!).

Member function editGoal () should prompt the user for a new goal, and use the value
to change the goal in the plan. Each time a plan is changed, the plan must be displayed
to the screen, using an overloaded stream insertion operator (see below).

In the same file in which each class declaration exists, three nonmember functions must
be declared.

Note: an overloaded operator is considered an overloaded function. The overloaded
stream insertion (<<) for both displaying a plan to the screen and for writing a plan to a
file, and the extraction (>>) operator for reading a plan from a file.

Observation: please notice that the DietPlan and ExercisePlan classes define very
similar attributes and operations. In the future, we will be able to design around
these similarities (using inheritance and polymorphism).

Fitness Application:

Each of the daily plans will be read from a file. Each file must consist of exactly seven
daily plans, representing a full week of plans. The daily diet plans will be read from a

file called “dietPlans.txt” and the daily exercise plans will be read from a file called
“exercisePlans.txt”. The format of the files must be represented in the following way:

Plan name
Goal
Date in the form mm/dd/yyyy
(blank line)
Plan name
Goal
Date in the form mm/dd/yyyy

You must read in each of the daily plans by applying
an overloaded stream extraction operator: fileStream >> DietPlan or fileStream >>
ExercisePlan. The overloaded operator must be defined as a nonmember function to the
DietPlan and ExercisePlan classes. Each plan is stored into the next available position in
your linear data structure whether it be an array, or linked list.

Observation: Inserting at the end of an array requires (amortized) constant time.
Inserting at the end of a linked list (with only a head pointer) requires linear time.
Consider this idea as you develop your solution!

The class FitnessAppWrapper is used to “wrap” the application. This class should
contain two lists (must be an array, or linked list) of weekly (7 days) plans: one diet and
one exercise weekly plan. It must also contain two fstream objects (input/output file
streams): one for each file. It must define the following member functions (some
prototypes are given to you, but not all!):

• void runApp(void): starts the main application.

• void loadDailyPlan(fstream &fileStream, DietPlan &plan): must define

two of these functions; one for a DietPlan and one for an ExercisePlan. This function
reads one record from the given stream. These will be considered overloaded
functions! Precondition: file is already open!

• void loadWeeklyPlan(fstream &fileStream, DietPlan weeklyPlan[]):

must define two of these functions; one for a DietPlan and one for an ExercisePlan.
This function must read in all seven daily plans from the given stream. Note: the
array parameter would change if using a vector or linked list! This function should
call loadDailyPlan () directly. Precondition: file is already open!

• displayDailyPlan (): writes a daily plan to the screen. You must apply the

overloaded stream insertion operator here! Note: you must determine the
appropriate parameters and return type. Once again you must define two of these!

• displayWeeklyPlan (): writes a weekly plan to the screen. This function must
call displayDailyPlan (). Note: you must determine the appropriate parameters and
return type. Once again you must define two of these!

• storeDailyPlan (): writes a daily plan to a file. You must apply the overloaded stream
insertion operator here! Note: you must determine the appropriate parameters and
return type. Once again you must define two of these!

• storeWeeklyPlan (): writes a weekly plan to a file. This function must
call storeDailyPlan (). You must apply the overloaded stream insertion operator here!
Note: you must determine the appropriate parameters and return type. Once again
you must define two of these!

• displayMenu (): displays nine menu options. These include:

1. Load weekly diet plan from file.
2. Load weekly exercise plan from file.
3. Store weekly diet plan to file.
4. Store weekly exercise plan to file.
5. Display weekly diet plan to screen.
6. Display weekly exercise plan to screen.
7. Edit daily diet plan.
8. Edit daily exercise plan.
9. Exit. // Note: this must write the most recent weekly plans to the

corresponding files.

Other functions? There should be!

Observation: Many of the functions in the FitnessAppWrapper class are overloaded.
There’s one version for use on a DietPlan and one version for use on an
ExercisePlan. We know these functions are considered overloaded because they
have the same name, but different parameter types. In the future, we could use

templates, and let the compiler generate code for us, instead of implementing
several versions of the same function ourselves.

BONUS:

Implement classes for ListNode and List to store the diet and exercise plans. You may
need to implement a different linked list for each of the plans. In the future, this could
be resolved by using templates.

IV. Submitting Assignments:

1. Must submit your assignment in a zip file through blackboard.
2. Your project must contain at least three header files (.h files) and four C++ source files

(which must be .cpp files). There should be one .h file per class declaration. There should
be one .cpp for each set of operations belonging to a single class and one for the main ()
function.

3. Your project must build properly. The most points an assignment can receive if it does not

build properly is 65 out of 100.

V. Grading Guidelines:

This assignment is worth 100 points. Your assignment will be evaluated based on a
successful compilation and adherence to the program requirements. We will grade
according to the following criteria:

• 5 pts – Appropriate top-down design, style, and commenting according to class
standards

• 18 pts – Appropriate design and implementation of Class DietPlan (including
member functions and data members)

1. 3 pts – 1 pt/each for declaring goal calories, plan name, and date
2. 2 pts – declaring and defining a constructor
3. 2 pts – declaring and defining a copy constructor
4. 1 pt – declaring and defining a destructor
5. 4 pts – declaring and defining setters/getters
6. 4 pts – declaring and defining an editGoal function
7. 2 pts – others?

• 18 pts – Appropriate design and implementation of Class ExercisePlan (including

member functions and data members)

1. 3 pts – 1 pt/each for declaring goal steps, plan name, and date
2. 2 pts – declaring and defining a constructor
3. 2 pts – declaring and defining a copy constructor

4. 1 pt – declaring and defining a destructor
5. 4 pts – declaring and defining setters/getters
6. 4 pts – declaring and defining an editGoal function
7. 2 pts – others?

• 47 pts – Appropriate implementation of Class FitnessAppWrapper (including
menu options, etc.)

1. 8 pts – 2 pts/each for declaring a list of diet plans, a list of exercise
plans, a file stream associated with “dietPlans.txt”, and a file stream
associated with “exercisePlans.txt”

2. 4 pts – declaring and defining runApp function
3. 4 pts – 2 pts/each for declaring and defining loadDailyPlan functions
4. 4 pts – 2 pts/each for declaring and defining loadWeeklyPlan functions
5. 4 pts – 2 pts/each for declaring and defining displayDailyPlan functions
6. 4 pts – 2 pts/each for declaring and defining displayWeeklyPlan functions
7. 4 pts – 2 pts/each for declaring and defining storeDailyPlan functions
8. 4 pts – 2 pts/each for declaring and defining storeWeeklyPlan functions
9. 2 pts – declaring and defining displayMenu function
10. 4 pts – opening and closing the files
11. 5 pts – others?

• 12 pts – 2 pts/each for the nonmember overloaded stream extraction and
stream insertion operators (4 total stream insertion operators, 2 total stream
extraction operators)

 BONUS: Up to 10 pts – Linked list implementation using ListNode and List classes

