
General Information:

 This document was created for use in the "Bridges to Computing" project of Brooklyn College.

 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. You are invited and

encouraged to use this presentation to promote computer science education in the U.S. and around the world.

 For more information about the Bridges Program, please visit our website at: http://bridges.brooklyn.cuny.edu/

Disclaimers:

 IMAGES: All images in this presentation were created by our Bridges to Computing staff or were found online

through open access media sites and are used under the Creative Commons Attribution-Share Alike 3.0 License.

If you believe an image in this presentation is in fact copyrighted material, never intended for creative commons

use, please contact us at http://bridges.brooklyn.cuny.edu/ so that we can remove it from this presentation.

 LINKS: This document may include links to sites and documents outside of the "Bridges to Computing" domain.

The Bridges Program cannot be held responsible for the content of 3rd party sources and sites.

BRIDGES TO COMPUTING

http://creativecommons.org/licenses/by-sa/3.0
http://bridges.brooklyn.cuny.edu/
http://bridges.brooklyn.cuny.edu/

GRAPHICS & INTERACTIVE

PROGRAMMING

Lecture 2

More Programming with Processing

RESOURCES

 Processing web site:

 http://www.processing.org/

 For loops (counter-controlled repetition)

 http://processing.org/reference/for.html

 While loops (event-controlled repetition)

 http://processing.org/reference/while.html

 Reference:

 http://www.processing.org/reference/index.html

http://www.processing.org/
http://processing.org/reference/for.html
http://processing.org/reference/while.html
http://www.processing.org/reference/index.html

CONTENT

o Variables

o Bitmap and Vector Graphics

o Event Handlers

o Keyboard & Mouse Events

o Repetition (looping)
• Counter Controlled (for)

• Event Controlled (while)

o Standard Processing Program

PREVIOUSLY IN LECTURE 1

o Processing is a programming language that allows you

to write simple graphics programs using an IDE.

o Processing is an Imperative, Procedural, Object-

Oriented programming language, that uses syntax

rules and a semantic keyword set similar to C++.

o In the last lab you started using the Imperative and
Procedural paradigm aspects of Processing. How does
Processing implement:

1) Sequence

2) Selection

3) Repetition (will cover in more detail)

4) Functions

VARIABLES

 A variable is a name and value pair.

 Variables provide a way to save information so that you
can refer to it (use it, change it) later.

 We will use variables for control (position, color, etc.)

 Some valid data types for variables include:
 int — for storing integers (whole numbers)

 float — for storing floating point (real) numbers

 boolean — for storing true or false values

 char — for storing single characters

 String — for storing multiple (strings of) characters

 Examples:
 int x1 = 10;
 float f1 = 3.14159;
 boolean b1 = false; // or true
 char c1 = ’C’;
 String str1 = ”Hello”;

BITMAP & VECTOR GRAPHICS

 There are two basic ways to create/store visual

images:

 Bitmap Graphics: Images that are composed of

individual pixels.

 Advantages: Easy to create/capture from real life.

 Disadvantages: Large, don't scale well.

 Vector Graphics: Images we create using a sequence

of mathematical function calls.

 Advantages: Smaller, scale well.

 Disadvantages: Can be difficult to create.

BITMAP AND VECTOR IMAGES (2)

EVENT HANDLERS

 In Processing “event handlers” are special, built-

in functions:

 These functions are called by the OS (Processing Run-Time)

 But you change the content of the funtions.

 Events are changes in the “state” of the program

and/or user initiated actions like keyboard and mouse

input.

 Users (programmers) can add event handler functions

to their programs, modify them, and use them to

change program variables, state, program flow, etc..

 You have already used the keyPressed() event

handler which responds to keyboard actions.

KEYBOARD VARIABLES &

EVENT HANDLER(S)

/** ********************
Use event-listeners like keyPressed() to allow users of your

program to cause things to happen.

******************** */

void keyPressed() {
if (key == 'A' || key == 'a') {

background(#FF0000);
}

}

// Function is called when any key is pressed.

// If key is 'A' or 'a' background is changed to red.

MOUSE VARIABLES & EVENT HANDLERS

 Variables
 mouseX and mouseY

 Special variables, managed by the computer.

 Indicate (x, y) location of mouse pointer

 mouseButton
 indicates which button was pressed (LEFT, RIGHT, CENTER) on a

multi-button mouse. (on a Mac with single-button mouse, use Ctrl-
click for right mouse button, Alt-click for middle mouse button)

 Event Handlers
 mouseClicked()

 Predefined “event handler” function. You change its content.

 Handles behavior when user clicks mouse button (press and release)

 mouseMoved()
 handles behavior when user moves mouse (moves it without pressing

button)

 mouseDragged()
 handles behavior when user drags mouse (moves it with button

pressed)

4TH PROGRAM

void setup() {

size(200, 200);

}

void draw() {

background(#cccccc);

fill(#990000);

rect(mouseX, mouseY, 20, 20);

}

void mouseMoved() {

fill(#000099);

rect(mouseX, mouseY, 20, 20);

}

void mouseDragged() {

fill(#009900);

rect(mouseX, mouseY, 20, 20);

}

5TH PROGRAM

void setup() {

size(200, 200);

}

void draw() {

background(#cccccc);

rect(mouseX, mouseY, 20, 20);

}

void mousePressed() {

if (mouseButton == LEFT) {

fill(#990000);

} else if (mouseButton == CENTER) { // Alt-click on mac

fill(#009900);

} else if (mouseButton == RIGHT) { // Ctrl-click on mac

fill(#000099);

}

}

REPETITION

 In the Imperative Paradigm (“smart list”) we

need sequence, selection and repetition.

 There are three basic types of repetition in

Processing:

 draw() function

 for loops

 while loops

 Repetition is necessary for animation, when we

want to display things over and over (although

slightly differently each frame/time).

COUNTER LOOPS (FOR)

 Counter controlled loops (for loops) repeat things for a

fixed number of times.

 Syntax:
for (init; test; update) {

statements
}

 Example:

int x1 = 10;

for (int i=0; i<5; i++) {
line(x1, 10, x1, 20);
x1 = x1 + 10;

}

EVENT-CONTROLLED LOOPS (WHILE)

 Event-Controlled loops (while loops) repeat
things while a condition holds true

 Syntax:

while (expression) {
statements

}

 Example:

int x2 = 10;

while (x2 < width) {

line(x2, 30, x2, 40);

x2 = x2 + 10;

}

6TH PROGRAM

int x1 = 10;

int x2 = 10;

void setup() {

stroke(#FF0000); // make line red

for (int i=0; i<5; i++) {

line(x1, 10, x1, 20);

x1 = x1 + 10;

}

stroke(#0000FF); // make line blue

while (x2 < width) {

line(x2, 30, x2, 40);

x2 = x2 + 10;

}

}

void draw() {

}

STANDARD PROCESSING PROGRAM

1) Setup any variables or classes you are going to use.

2) Use setup() function to specify things to do once, when the
sketch first opens

3) Use draw() function to specify things to do repeatedly

 Use frameRate() function to specify how often things should be

repeated in draw();

 Default frame-rate is 60 (60 frames per second)

 NOTE: call to frameRate() should be done inside setup() function.

For animations frameRate should be slower than 30 frames/sec

4) Declare any event-listeners that you are going to use.

5) Declare any custom made functions you are going to use.

6) Declare any classes that you are going to use.

Note: I have created a processing template that you can use
to start your programs.

GENERALIZED PROGRAM OUTLINE

/** ********** Variables: ********** */

/** ********** setup(): ********** */

void setup() {

}

/** ********** draw(): ************* */
void draw() {
}

/** ********** Event Handlers: ***** */
void keyPressed() {
}

/** ********** Custom Functions: *** */
void draw_simple_image {
}

/** ********** Classes: ************ */

THE END

