
1

Project 3

Introduction - the SeaPort Project series

For this set of projects for the course, we wish to simulate some of the aspects of a number of Sea Ports.

Here are the classes and their instance variables we wish to define:

 SeaPortProgram extends JFrame
o variables used by the GUI interface
o world: World

 Thing implement Comparable <Thing>
o index: int
o name: String
o parent: int

 World extends Thing
o ports: ArrayList <SeaPort>
o time: PortTime

 SeaPort extends Thing
o docks: ArrayList <Dock>
o que: ArrayList <Ship> // the list of ships waiting to dock
o ships: ArrayList <Ship> // a list of all the ships at this port
o persons: ArrayList <Person> // people with skills at this port

 Dock extends Thing
o ship: Ship

 Ship extends Thing
o arrivalTime, dockTime: PortTime
o draft, length, weight, width: double
o jobs: ArrayList <Job>

 PassengerShip extends Ship
o numberOfOccupiedRooms: int
o numberOfPassengers: int
o numberOfRooms: int

 CargoShip extends Ship
o cargoValue: double
o cargoVolume: double
o cargoWeight: double

 Person extends Thing
o skill: String

 Job extends Thing - optional till Projects 3 and 4
o duration: double
o requirements: ArrayList <String>

// should be some of the skills of the persons
 PortTime

o time: int

Eventually, in Projects 3 and 4, you will be asked to show the progress of the jobs using JProgressBar's.

2

Here's a very quick overview of all projects:

1. Read a data file, create the internal data structure, create a GUI to display the structure, and let
the user search the structure.

2. Sort the structure, use hash maps to create the structure more efficiently.
3. Create a thread for each job, cannot run until a ship has a dock, create a GUI to show the

progress of each job.
4. Simulate competing for resources (persons with particular skills) for each job.

Project 3 General Objectives

Project 3 - More JDK classes - GUI's and threads

 Explore other GUI classes, such as JTree, JTable, and JProgressBar.
 Create and run threads

o Competing for one resource.

 Documentation Requirements:

You should start working on a documentation file before you do anything else with these projects, and
fill in items as you go along. Leaving the documentation until the project is finished is not a good idea for
any number of reasons.

The documentation should include the following (graded) elements:

 Cover page (including name, date, project, your class information)
 Design

o including a UML class diagram
o classes, variables and methods: what they mean and why they are there
o tied to the requirements of the project

 User's Guide
o how would a user start and run your project
o any special features
o effective screen shots are welcome, but don't overdo this

 Test Plan
o do this BEFORE you code anything
o what do you EXPECT the project to do
o justification for various data files, for example

 Lessons Learned
o express yourself here
o a way to keep good memories of successes after hard work

3

Project 3 Specific Goals:

Implement threads and a GUI interface using advanced Java Swing classes.

1. Required data structure specified in Project 1:
1. World has SeaPort's
2. SeaPort has Dock's, Ship's, and Person's
3. Dock has a Ship
4. Ship has Job's
5. PassengerShip
6. CargoShip
7. Person has a skill
8. Job requires skills- NEW CLASS for this project!
9. PortTime

2. Extend Project 2 to use the Swing class JTree effectively to display the contents of the data file.
o (Optional) Implement a JTable to also show the contents of the data file. There are lots

of options here for extending your program.
3. Threads:

o Implement a thread for each job representing a task that ship requires.
o Use the synchronize directive to avoid race conditions and insure that a dock is

performing the jobs for only one ship at a time.
 the jobs of a ship in the queue should not be progressing
 when all the jobs for a ship are done, the ship should leave the dock, allowing a

ship from the que to dock
 once the ship is docked, the ships jobs should all progress
 in Project 4, the jobs will also require persons with appropriate skills.

o The thread for each job should be started as the job is read in from the data file.
o Use delays to simulate the progress of each job.
o Use a JProgressBar for each job to display the progress of that job.
o Use JButton's on the Job panel to allow the job to be suspended or cancelled.

4. As before, the GUI elements should be distinct (as appropriate) from the other classes in the
program.

5. See the code at the end of this posting for some suggestions.

Suggestions for Project 3 Job class. Here is a sample of code for a Job class in another context, the
Sorcerer's Cave project. The code for this class will need some modifications, but this should give you an
idea of the issues involved.
In fact, you should find much of this code redundant.

Also, some of the code at the following sites might give you some ideas about how to proceed with this
project:

 Project 3 Example - Sorcerer's Cave, note that even this one isn't complete
 run method - detailed analysis of the run method in the Job class in the Cave project

// j:<index>:<name>:<creature index>:<time>[:<required artifact type>:<number>]*
class Job extends CaveElement implements Runnable {
 static Random rn = new Random ();

http://sandsduchon.org/duchon/cs335/cave/p3example.html
http://sandsduchon.org/duchon/cs335/cave/runMethod.html

4

 JPanel parent;
 Creature worker = null;
 int jobIndex;
 long jobTime;
 String jobName = "";
 JProgressBar pm = new JProgressBar ();
 boolean goFlag = true, noKillFlag = true;
 JButton jbGo = new JButton ("Stop");
 JButton jbKill = new JButton ("Cancel");
 Status status = Status.SUSPENDED;

 enum Status {RUNNING, SUSPENDED, WAITING, DONE};

 public Job (HashMap <Integer, CaveElement> hmElements, JPanel cv, Scanner sc) {
 parent = cv;
 sc.next (); // dump first field, j
 jobIndex = sc.nextInt ();
 jobName = sc.next ();
 int target = sc.nextInt ();
 worker = (Creature) (hmElements.get (target));
 jobTime = sc.nextInt ();
 pm = new JProgressBar ();
 pm.setStringPainted (true);
 parent.add (pm);
 parent.add (new JLabel (worker.name, SwingConstants.CENTER));
 parent.add (new JLabel (jobName , SwingConstants.CENTER));

 parent.add (jbGo);
 parent.add (jbKill);

 jbGo.addActionListener (new ActionListener () {
 public void actionPerformed (ActionEvent e) {
 toggleGoFlag ();
 }
 });

 jbKill.addActionListener (new ActionListener () {
 public void actionPerformed (ActionEvent e) {
 setKillFlag ();
 }
 });

 new Thread (this).start();
 } // end constructor

// JLabel jln = new JLabel (worker.name);
// following shows how to align text relative to icon
// jln.setHorizontalTextPosition (SwingConstants.CENTER);

5

// jln.setHorizontalAlignment (SwingConstants.CENTER);
// parent.jrun.add (jln);

 public void toggleGoFlag () {
 goFlag = !goFlag;
 } // end method toggleRunFlag

 public void setKillFlag () {
 noKillFlag = false;
 jbKill.setBackground (Color.red);
 } // end setKillFlag

 void showStatus (Status st) {
 status = st;
 switch (status) {
 case RUNNING:
 jbGo.setBackground (Color.green);
 jbGo.setText ("Running");
 break;
 case SUSPENDED:
 jbGo.setBackground (Color.yellow);
 jbGo.setText ("Suspended");
 break;
 case WAITING:
 jbGo.setBackground (Color.orange);
 jbGo.setText ("Waiting turn");
 break;
 case DONE:
 jbGo.setBackground (Color.red);
 jbGo.setText ("Done");
 break;
 } // end switch on status
 } // end showStatus

 public void run () {
 long time = System.currentTimeMillis();
 long startTime = time;
 long stopTime = time + 1000 * jobTime;
 double duration = stopTime - time;

 synchronized (worker.party) { // party since looking forward to P4 requirements
 while (worker.busyFlag) {
 showStatus (Status.WAITING);
 try {
 worker.party.wait();
 }
 catch (InterruptedException e) {
 } // end try/catch block

6

 } // end while waiting for worker to be free
 worker.busyFlag = true;
 } // end sychronized on worker

 while (time < stopTime && noKillFlag) {
 try {
 Thread.sleep (100);
 } catch (InterruptedException e) {}
 if (goFlag) {
 showStatus (Status.RUNNING);
 time += 100;
 pm.setValue ((int)(((time - startTime) / duration) * 100));
 } else {
 showStatus (Status.SUSPENDED);
 } // end if stepping
 } // end runninig

 pm.setValue (100);
 showStatus (Status.DONE);
 synchronized (worker.party) {
 worker.busyFlag = false;
 worker.party.notifyAll ();
 }

 } // end method run - implements runnable

 public String toString () {
 String sr = String.format ("j:%7d:%15s:%7d:%5d", jobIndex, jobName, worker.index, jobTime);
 return sr;
 } //end method toString

} // end class Job

Deliverables:

1. Java source code files
2. Data files used to test your program
3. Configuration files used
4. A well-written document including the following sections:

a. Design: including a UML class diagram showing the type of the class relationships
b. User's Guide: description of how to set up and run your application
c. Test Plan: sample input and expected results, and including test data and results, with

screen snapshots of some of your test cases
d. Optionally, Comments: design strengths and limitations, and suggestions for future

improvement and alternative approaches
e. Lessons Learned
f. Use one of the following formats: MS Word docx or PDF.

7

Your project is due by midnight, EST, on the day of the date posted in the class schedule. We do not
recommend staying up all night working on your project - it is so very easy to really mess up a project at
the last minute by working when one was overly tired.

Your instructor's policy on late projects applies to this project.

Submitted projects that show evidence of plagiarism will be handled in accordance with UMUC Policy
150.25 — Academic Dishonesty and Plagiarism.

Format:

The documentation describing and reflecting on your design and approach should be written using
Microsoft Word or PDF, and should be of reasonable length. The font size should be 12 point. The page
margins should be one inch. The paragraphs should be double spaced. All figures, tables, equations, and
references should be properly labeled and formatted using APA style.

Coding Hints:

 Code format: (See Google Java Style guide for specifics
(https://google.github.io/styleguide/javaguide.html))

o header comment block, including the following information in each source code file:
o file name
o date
o author
o purpose
o appropriate comments within the code
o appropriate variable and function names
o correct indentation

 Errors:
o code submitted should have no compilation or run-time errors

 Warnings:
o Your program should have no warnings
o Use the following compiler flag to show all warnings:

javac -Xlint *.java
o More about setting up IDE's to show warnings
o Generics - your code should use generic declarations appropriately, and to eliminate all

warnings
 Elegance:

o just the right amount of code
o effective use of existing classes in the JDK
o effective use of the class hierarchy, including features related to polymorphism.

 GUI notes:
o GUI should resize nicely
o DO NOT use the GUI editor/generators in an IDE (integrated development environment,

such as Netbeans and Eclipse)
o Do use JPanel, JFrame, JTextArea, JTextField, JButton, JLabel, JScrollPane

 panels on panels gives even more control of the display during resizing
 JTable and/or JTree for Projects 2, 3 and 4

http://sandsduchon.org/duchon/Musings/a/warnings.html

8

 Font using the following gives a nicer display for this program, setting for the
JTextArea jta:
 jta.setFont (new java.awt.Font ("Monospaced", 0, 12));

o GridLayout and BorderLayout - FlowLayout rarely resizes nicely
 GridBagLayout for extreme control over the displays
 you may wish to explore other layout managers

o ActionListener, ActionEvent - responding to JButton events
 Starting with JDK 8, lambda expression make defining listeners MUCH simpler.

See the example below, with jbr (read), jbd (display) and jbs (search) three
different JButtons.
jcb is a JComboBox <String> and jtf is a JTextField.
 jbr.addActionListener (e -> readFile());
 jbd.addActionListener (e -> displayCave ());
 jbs.addActionListener (e -> search ((String)(jcb.getSelectedItem()),
jtf.getText()));

o JFileChooser - select data file at run time
o JSplitPane - optional, but gives user even more control over display panels

Grading Rubric:

Attribute Meets Does not meet

Design 20 points
Contains just the right amount of
code.

Uses existing classes in the JDK
effectively.

Effectively uses of the class
hierarchy, including features
related to polymorphism.

GUI elements should be distinct
from the other classes in the
program.

0 points
Does not contain just the right amount
of code.

Does not use existing classes in the JDK
effectively.

Does not effectively use of the class
hierarchy, including features related to
polymorphism.

GUI elements are not distinct from the
other classes in the program.

Functionality 40 points
Contains no coding errors.

Contains no compile warnings.

Builds from Project 1.

Includes all required data
structures specified in Project 1.

0 points
Contains coding errors.

Contains compile warnings.

Does not build from Project 1.

Does not include all required data
structures specified in Project 1.

9

Extends Project 2 to use the Swing
class JTree effectively to display the
contents of the data file.

Implements a thread for each job
representing a task that ship
requires.

Uses the synchronize directive to
avoid race conditions and insure
that a dock is performing the jobs
for only one ship at a time.

The thread for each job starts as
the job is read in from the data file.

Uses delays to simulate the
progress of each job.

Uses a JProgressBar for each job to
display the progress of that job.

Uses JButton's on the Job panel to
allow the job to be suspended or
cancelled.

Extends the GUI from Project 1 to
allow the user to sort by the
comparators.

Does not extend Project 2 to use the
Swing class JTree effectively to display
the contents of the data file.

Does not implement a thread for each
job representing a task that ship
requires.

Does not use the synchronize directive
to avoid race conditions and insure that
a dock is performing the jobs for only
one ship at a time.

The thread for each job does not start
as the job is read in from the data file.

Does not use delays to simulate the
progress of each job.

Does not use a JProgressBar for each
job to display the progress of that job.

Does not use JButton's on the Job panel
to allow the job to be suspended or
cancelled.

Does not extend the GUI from Project 1
to allow the user to sort by the
comparators.

Test Data 20 points
Tests the application using multiple
and varied test cases.

0 points
Does not test the application using
multiple and varied test cases.

Documentation and
submission

15 points
Source code files include header
comment block, including file
name, date, author, purpose,
appropriate comments within the
code, appropriate variable and
function names, correct
indentation.

Submission includes Java source
code files, Data files used to test
your program, Configuration files
used.

0 points
Source code files do not include header
comment block, or include file name,
date, author, purpose, appropriate
comments within the code, appropriate
variable and function names, correct
indentation.

Submission does not include Java
source code files, Data files used to test
your program, Configuration files used.

10

Documentation includes a UML
class diagram showing the type of
the class relationships.

Documentation includes a user's
Guide describing of how to set up
and run your application.

Documentation includes a test plan
with sample input and expected
results, test data and results and
screen snapshots of some of your
test cases.

Documentation includes Lessons
learned.

Documentation is in an acceptable
format.

Documentation does not include a UML
class diagram showing the type of the
class relationships.

Documentation does not include a
user's Guide describing of how to set
up and run your application.

Documentation does not include a test
plan with sample input and expected
results, test data and results and screen
snapshots of some of your test cases.

Documentation does not include
Lessons learned.

Documentation is not in an acceptable
format.

Documentation form,
grammar and spelling

5 points
Document is well-organized.

The font size should be 12 point.

 The page margins should be one
inch.

The paragraphs should be double
spaced.

All figures, tables, equations, and
references should be properly
labeled and formatted using APA
style.

The document should contain
minimal spelling and grammatical
errors.

0 points
Document is not well-organized.

The font size is not 12 point.

 The page margins are not one inch.

The paragraphs are not double spaced.

All figures, tables, equations, and
references are not properly labeled or
formatted using APA style.

The document should contains many
spelling and grammatical errors.

