CIS331 —Fall 2019
Homework #5 — DukeLoanSystem

General Overview: An amortization schedule shows the month-to-month state of a loan as a
payee makes payments on interest and principle. Generally, your program will allow you to
create loans for multiple people, and store these amortization tables in a 3-dim array.

Due Date: Saturday, October 26" by 11:59 p.m.

Grade: 80 Homework Points

Program output is at the end of this Requirements Document.

Requirements and Grading Rubric: This is a complex program that will test your knowledge on
all concepts we have covered so far. You will be working with Methods, as well as with Multi-
dimensional arrays in this assignment. Make sure you understand all the major concepts from
these chapters and the associated in-class lectures.

- At a minimum, you must implement the methods as listed in the Pseudocode below.
You may create more if you wish/need.

- Your program contains no compile or run-time errors.

- Loan customer names must be stored in the two-dimensional array nameTable (as
shown below). Customer amortization schedules must be stored in the three
dimensional array amortDB (as shown below)

- The populateAmort() method must be able to handle any loan, interest, and lifetime
inputs, along with references to the amortDB and nameTable arrays, and the input of
what position in the amortDB to store the new schedule at. You will account for both
printing it to the screen and storing the data for each amortization schedule in the
three-dimensional array appropriately.

- Your program must not contain any logic errors. You must properly traverse the two and
three-dimensional arrays that store your customer data.

0 When adding a new customer, you must split and reverse their name using the
splitName() method, and add this at a new empty position in the nameTable[][]
array (Meaning, you will write the code that will traverse the array searching for
a new empty spot, and once found, the lastname and firstname will be inserted
into this empty spot at column locations 0 and 1, respectively.

0 When adding a new loan schedule for a new customer, you will add the new
schedule at the same position in the amortDBI[][][] array that you added the new
name at in the nameTable[][] array. Meaning: These two arrays will be parallel to
each other. If you have three names in nameTable then there should be three
schedules stored in amortDBJ[][][], and at positions 0, 1, and 2 in each,
respectively. populateAmort() should be used for generating the new schedule
and saving it into amortDB[][][]

0 When updating/changing a schedule for a customer, you will call
populateAmort() at the position you are updating and have it run using the new

loan, APR, or lifetime figures, and it will re-populate the amortization schedule at
that location (overwriting the old values for the new at the pre-existing position).

Method Hierarchy: (Solid Thin Arrows: Dependencies)

Program will loop at menu
after all processing unless
user chooses “Exit” option

handleLoanMenuChoice()

addLoan() adjustLoan()

printAmort()

splitName() nameTableFreePosition() populateAmort() /

chooseCustomer()

Listing of main(): (This is all the code you should have in your main() method)

double[]1[][] amocrtDBE = new double[1000]1[]11[]1:
String[][] nameTable = new String[1000][2];

Scanner in = new Scanner (System.in);

int menucChoice = 0;

System.cut.println("Welcome to LoanfppPro wv. 1.1");

do

i
System.out.println{("\n————"—H—"-"-"—-""-""——————— ")
System.cut.println(”l. Add New Loan")};
System.cout.println("2Z. Adjust Customer Loan™);
System.cut.println("3. Print Loan Schedule");
System.cut.println (4. Exit Program")
System.cut.print ("Enter Choice: ");
menuChoice = in.nextInt () ;

handlelLoanMenuCheoice (menuChoice, amortDB, nameTable) ;
} while (menuChoice != 4);
System.cut.println{"\nProgram Exiting. . . "};

Pseudocode for each method:

Here | am giving you the actual Method Definition’s Header that will use in your code, then |
give you some pseudocode for how each method will work. Take note of the parameters passed
in and any return values for the methods. Your parameters will tell you what data/value inputs
you can see and work with in each method. Your return types (if not ‘void’) will tell you what you
need to send back to the calling code.

public static void handleLoanMenuChoice(int menuChoice,
double[][][] amortDB,
String[][] nameTable)

Swtich on menu choice.
{
Case 1: call addLoan(...);
Case 2: call adjustLoan(...);
Case 3: call printAmort(...chooseCustomer());
Default: Prompt for invalid menu choice.

}

public static void printAmort(double[][][] amortDB,
String[][] nameTable, int amortTablePosition)

(Accepts the position of the amortization table to print as a parameter input)
Print out “Amortization schedule for” with lastname, firstname concatenanted on end.
Print out schedule column headers

for (i=0; i<amortDB[parameter position].length;i++
{

print out the four columns for each row in the schedule selected by amortTablePosition
in amortDBI[][][]

}

public static void addLoan(double[][][] amortDB,
String[][] nameTable)

Prompt and capture customer name

call splitArray() and capture the returned single-dimension String[] array in a String[] array

call nameTableFreePosition() and capture the returned integer in a variable for the new empty
position in both amortDB[][][] and nameTable[][]

Prompt and capture loan amount

Prompt and capture APR

Prompt and capture loan lifetime.

call populateAmort() and pass to it references to amortDB, nameTable, as well as the new
position number, the loan amount, APR, and loan lifetime.

public static void populateAmort(double[][][] amortDB,
String[][] nameTable,
int insertPosition,
double loanAmount,
double annuallnterestRate,
int numberOfYears)

(Call printAmort() at the end and pass it the position you are saving the schedule into
amortDBI][][] at so that it can print the new schedule just created.)

(During the for loop that prints out each month’s schedule information, save into the
amortDBI][][] array the values for thisMonthsInterest, MonthlyPayment — thisMonth’sInterest,
and the principal remaining that month, in the appropriate columns respectively. Basically, if
we are creating a new amortization schedule in amortDB[][][] after there is already 2 stored,
then we will set amortDB[2] = to a new two-dimensional double[][] array and then fill its rows
and columns in with the new data. For updating an existing schedule, this will be an overwrite
at an existing position. Either way, you will populate a schedule at the integer position passed
as a parameter to this method!)

public static void adjustLoan(double[][][] amortDB,
String[][] nameTable)

call chooseCustomer() and capture the position number it returns back for the selected user.
Prompt and capture loan amount
Prompt and capture APR
Prompt and capture loan lifetime.
call populateAmort and pass to it references to amortDB, nameTable, as well as the EXISTING
position number, the loan amount, APR, and loan lifetime.
(It is important to note here, that this method essentially amounts to:
- listing all customers in nameTable
- printing a number beside each name starting with 0
- The user gets to select 0, 1, 2, etc. This becomes the position in the amortDBI[][][] array
that will be UPDATED. Adjusting the Loan means we are giving the user the ability to
enter new numbers, we re-generate the schedule, and save the new schedule by
overwriting the old one with the new one.)

public static String[] splitName(String inputName)

create a single-dimension String[] array with two columns

use substring() and indexOf() to find the lastname and store it in the String[] at the first
position.

use substring() and indexOf() to find the firstname and store it in the String[] at the second
position.

return back the String|[]

public static int nameTableFreePosition(String[][] nameTable)

create an int position that will be incremented
loop while (the lastname at nameTable[position][] is not null)

{

increment position

}

return position

public static int chooseCustomer(String[][] nameTable)

Prompt for user to select a customer
while (sentinel variable < length of nameTable) //less than number of rows in nameTable
{

if (the lastname at nameTable[sentinel value] is equal to null)

break;

Print out the firstname and lastname from nameTable[sentinel value]

increment the sentinel value
}
Prompt for and capture the user choice
return the user choice as the integer return value for this method.

[Next Page ---->]

Thinking about nameTable[1000][2] and amortDB[1000][][] arrays:

nameTable[rows][cols]: amortDBJ[tables][rows][cols]
0] [0] 0 1 2
0 [Eel" [eremy" 0 58.33] 806.93] 9193.07
! [Madisontomes’ 1) » [anss] sioss] Tes0s
2 null null s 0 .

0 1 2 743.91
0 7.44 145.45| 1640.55p17.98
. . . 1 6.84 146.06| 1494.49P87.24
1000 |null null 2 6.23 146.67| 1347.82p51.65
3 5.62 147.28| 1200.54#11.18
4 5 147.89| 1052.65p65.81
5 4.39 148.51 904.1415.51
6 3.77 149.13 755.01B60.25
7 3.15 149.75 605.26 0

8 2.52 150.37 454.89

9 1.9 151 303.89

10 1.27 151.63 152.26

11 0.63 152.26 0

- If Irefer to amortDB[1][0][0] then | am referring to the specific value 7.44 (try it above!)

- If I refer to amortDB[1] then | am referring to the entire second table.

- If Irefer to amortDB[1][0] then | am referring to the first single-dimension double[] array on
the second table {7.44, 145.45, 1640.55}.

- When you call addLoan() and you tell it to add a customer at position 2, this means that the
lastname and first name will be added at nameTable[2] in the first and second colulmn, and
you will add the new customer’s amortization schedule at amortDB[2].

- Notice in the two examples above, the amortization schedules both have 12 months. How
would you add a third that maybe has 180 months? How would | do a simple example of
this? Notice in the listing for main() above that when | create the amortDB object, that | only
initialize it with the pages dimension (double[][][] amortDB = new double[1000][](];).
amortDB[0] = new double[12][3]; // Creates an empty first table in amortDB[][][].
amortDB[1] = new double[12][3]; // Creates an empty second table in amortDB[][][].
amortDB[2] = new double[180][3]; // adds an empty third page, but this one has 180 rows
instead of just 12 like in the first two.

Program Output:

Welcome to DukeLoanSystem!

1. Add New Loan

2. Adjust Customer Loan
3. Print Loan Schedule
4. Exit Program

Enter Choice: 1

Enter Customer Name: Jeremy Ezell

Please enter amount of full loan principal: 10000
Please enter your Annual Interest Rate: 7

Please enter # of years of the loan: 1
Amortization Schedule for Ezell, Jeremy

Payment #: Interest: Principal: Balance:
1 58.33 806.93
2 53.63 811.64
3 48.89 816.38
4 44.13 821.14
5 39.34 825.93
6 34.52 830.75
7 29.68 835.59
8 24.80 840.47
9 19.90 845.37
10 14.97 850.30
11 10.01 855.26
12 5.02 860.25

1. Add New Loan

2. Adjust Customer Loan
3. Print Loan Schedule
4. Exit Program

Enter Choice: 1

Enter Customer Name: James Madison

Please enter amount of full loan principal: 1786
Please enter your Annual Interest Rate: 5.0
Please enter # of years of the loan: 1
Amortization Schedule for Madison, James

Payment #: Interest: Principal: Balance:
1 7.44 145.45
2 6.84 146.06
3 6.23 146.67
4 5.62 147.28
5 5.00 147.89
6 4.39 148.51
7 3.77 149.13

9193.07
8381.42
7565.05
6743.91
5917.98
5087.24
4251.65
3411.18
2565.81
1715.51
860.25
0.00

1640.55
1494.49
1347.82
1200.54
1052.65
904.14

755.01

605.26
454.89
303.89
152.26
-0.00

4592.80
4183.90
3773.29
3360.98
2946.94
2531.18
2113.69
1694.46
1273.49
850.75
426.26
-0.00

8 3.15 149.75
9 2.52 150.37
10 1.90 151.00
11 1.27 151.63
12 0.63 152.26

1. Add New Loan

2. Adjust Customer Loan

3. Print Loan Schedule

4. Exit Program

Enter Choice: 2

Please Choose a Customer:

0: Ezell, Jeremy

1: Madison, James

Choice?: 1

Please enter amount of full loan principal: 5000

Please enter your Annual Interest Rate: 5.0

Please enter # of years of the loan: 1

Amortization Schedule for Madison, James
Payment #: Interest: Principal: Balance:
1 20.83 407.20
2 19.14 408.90
3 17.43 410.60
4 15.72 412.32
5 14.00 414.03
6 12.28 415.76
7 10.55 417.49
8 8.81 419.23
9 7.06 420.98
10 5.31 422.73
11 3.54 424.49
12 1.78 426.26
1. Add New Loan

2. Adjust Customer Loan

3. Print Loan Schedule

4. Exit Program

Enter Choice: 3

Please Choose a Customer:

0: Ezell, Jeremy

1: Madison, James

Choice?: 0

Amortization Schedule for Ezell, Jeremy
Payment #: Interest: Principal: Balance:
1 58.33 806.93

9193.07

53.63
48.89
4413
39.34
34.52
29.68
24.80
19.90
14.97
10.01
5.02

O oo NOOULL b WN

[Y
N L O

811.64
816.38
821.14
825.93
830.75
835.59
840.47
845.37
850.30
855.26
860.25

1. Add New Loan

2. Adjust Customer Loan
3. Print Loan Schedule
4. Exit Program

Enter Choice: 4

Program Exiting. . .

8381.42
7565.05
6743.91
5917.98
5087.24
4251.65
3411.18
2565.81
1715.51
860.25
0.00

