CSCI-2010 Assignment Pass10
50 Points
OBJECTIVES
This assignment has you work with inheritance and polymorphism. The algorithms in this assignment are simple. This assignment is more about arranging code when using multiple classes.
INSTRUCTIONS
Programs such as Microsoft Word allow you to create a document in one format, but save the document in multiple formats – PDF, HTML, etc. We are going to do something similar and write a document writer that can convert an input file into different formats.
In your program, you will read a data file that is in text format, and then write it out in one of two output formats. The code will use inheritance and polymorphism in order to minimize the amount of duplicate code.
Input Files
Sample input files have been provided – data1.txt, data2.txt, and data3.txt. The file format for each data file is as follows:
· The first line is the title of the text
· The second line is the author of the text
· The remaining lines are the content. There will be at least one content line in a data file.

Output Formats
You will be creating two output formats. Each of the formats will have three sections
· A header which displays the author and title
· The content
· The footer which displays the date and time the file was written.
Here is a sample input file, data1.txt:
The Cow
Ogden Nash
The cow is of the bovine ilk;
One end is moo, the other, milk.

Regular Output Format
The first output format is regular format. Here is the input file data1.txt transformed to the regular format:
Title: The Cow
Author: Ogden Nash

The cow is of the bovine ilk;
One end is moo, the other, milk.

Output on Sun Mar 30 19:25:33 2014

Notice in the header, the title and author have labels and there is one blank line before the content. Also notice there is one blank line between the content and footer, which has the date.

Large Text Output Format
The second output format is the large text format. It has the same header and footer as the regular format, but the content has been transformed into all uppercase letters:
Title: The Cow
Author: Ogden Nash

THE COW IS OF THE BOVINE ILK;
ONE END IS MOO, THE OTHER, MILK.

Output on Sun Mar 30 19:26:45 2014

All the characters – letters, punctuation, line breaks – of the content are preserved. It is just the letters that have been made uppercase.

Class Hierarchy
You will be writing code for 3 classes plus a main file. The three classes are
· DocumentWriter
· Place the specification in DocumentWriter.h and the implementation in DocumentWriter.cpp
· This class has three member variables
· A title which is a string
· An author which is a string
· A content which is a string.
· You may be tempted to make content an array because there are multiple lines in the data files. Notice, the input file description only says that there will be at least one line in the file, but it doesn’t say the largest number of lines. You have no information that you can use to determine the size of an array, so just concatenate all the content lines into one giant string.
· The class has a constructor which has arguments for each member variable
· The class has a member function getDate() which returns the current date and time as string (see notes later in this file)
· The class defines three pure virtual functions
· void writeHeader(ofstream &)
· void writeContent(ofstream &)
· void writeFooter(ofstream &)
· These should be pure virtual functions. They will not have an implementation in DocumentWriter.cpp
· The argument is a ofstream object that has already been opened for writing.
· TextWriter
· Place the specification in TextWriter.h and the implementation in TextWriter.cpp
· TextWriter is a subclass of DocumentWriter.
· TextWriter is responsible for writing out data in the regular format described above.
· The class has a constructor which has arguments for each member variable.
· The class should provide an implementation for the writeHeader fucntion
· It should write out the title, the author, and a blank line
· The class should provide an implementation for the writeContent function
· It should write out the content followed by a blank line

· The class should provide an implementation for the writeFooter function
· It should use the getDate function to write out the complete line needed for the footer
· LargeTextWriter
· Place the specification in LargeTextWriter.h and the implementation in LargeTextWriter.cpp
· LargeTextWriter is a subclass of TextWriter.
· LargeTextWriter is responsible for writing out data in the large text format described above.
· The class has a constructor which has arguments for each member variable
· The class should provide an implementation for the writeContent function
· It should write out the content followed by a blank line. All the letters should be output as uppercase (see notes in this PDF)
In all the classes,
· Choose the appropriate modifier – private, protected, public – for each member
· Do not duplicate code. If the code exists in the parent class, use it. Do not copy/paste it into the child class.
Here is a basic class diagram to help you visualize what is in each class.
[image:]

The program
Your main.cpp should define the following function at a minimum
· void writeDocument(ofstream &output, DocumentWriter &writer)
· This function should accept an ofstream object that represents a file to write to . The ofstream object should already be open and ready for writing.
· The second argument is a DocumentWriter, which could really be either a TextWriter object or a LargeTextWriter object. Take that object and use it to write out the header, content, and footer to the file.

The rest of main.cpp should
· Prompt the user if they want to format a file or exit
· If the user is formatting, ask them which format they want, regular or large. Make sure they choose a regular format.
· Ask for the input file. Make sure it opens successfully
· Ask for the output file. Make sure it opens successfully.
· Read the data from the input file and use to create the correct writer: TextWriter or LargeTextWriter. Pass that object and the output file to the writeDocument function.
· Keep doing this until the user chooses exit.
· When exiting, make sure to print your name.
· Your output should be similar to the sample output.
· Do not use any global variables. Every variable must either be a local variable, a member variable in a class, or a parameter to a function.

Look at the sample output below to get a better understanding of the flow.

Sample Output
Bold represents user input
Welcome to the document formatter!!

1. Format a document
2. Exit
Choice: 1

Choose a format style
1. Regular textThis created the file output_regular.txt in the regular format, using data1.txt as input

2. Large text
Choice: 1

Enter data file: data1.txt

Enter output file: output_regular.txt

[bookmark: _GoBack]1. Format a document
2. Exit
Choice: 1

Choose a format style
1. Regular text
2. Large textThis created the file the_big_one.txt in the large format, using data1.txt as input

Choice: 2

Enter data file: data1.txt

Enter output file: the_big_one.txt

1. Format a document
2. Exit
Choice: 2

Thanks for using Pat Programmer’s document formatter

Current date and time as a string
https://www.chegg.com/homework-help/questions-and-answers/current-date-time-string-experiment-code-learn-get-string-representation-current-date-time-q33691614
Experiment with this code to learn how to get a string representation of the current date and time in C++:
#include <string>
#include <iostream>
#include <ctime>

using namespace std;

int main() {
	time_t rawtime;
 time (&rawtime);
 string dateString = ctime(&rawtime);
	cout << "It is now " << dateString << endl;
	system("pause");
	return 0;
}

Uppercase a string
https://www.chegg.com/homework-help/questions-and-answers/current-date-time-string-experiment-code-learn-get-string-representation-current-date-time-q33591274
Experiment with this code to learn how to convert letters to uppercase in C++:
#include <string>
#include <iostream>
#include <cctype>

using namespace std;

int main() {
	string word = "Don't panic";
	for (int i = 0; i < word.length(); i++) {
		char ch = toupper(word[i]);
		cout << ch << endl;
	}
	system("pause");	
	return 0;
}
What to Turn In
When finished, upload your code. This submission process is different than for previous assignments. There will be 7 program related files to upload, 3 header (.h) files and 4 code (.cpp) files. You must upload all 7 files. In addition, screen capture your test cases and include your output files.
To submit, please follow these steps:
· In your File Explorer, go to the directory with your source code. This will be the same directory that you also go to when submitting your programming assignments.
· Select the files listed above and compress them into a single ZIP file.
· You should check your file before submitting to ensure that it has the required files.
· Upload the ZIP file into the DropBox in D2L named Pass10.
Do not use RAR or any another compression format. Only ZIP files will be accepted.
image1.png

