
ICS 46 Lecture B Fall 2019 Project 3: Counting the Trees
Due ​November 17, 2019, 11:59 PM
Note that this is well later than the syllabus originally stated.
There is a “checkpoint” portion: you must submit your partial code by Monday November 11 at
11:59PM. The first four test cases provided, marked as checkpoint, will be the only four graded
for this checkpoint. This is worth 25% of your “correctness” grade for this assignment.

Introduction
Do you know about Zipf’s Law? It relates to a phenomenon for how very frequent items can
sometimes appear far more frequently than less frequent items. For example, the word “the” is
something like 7% of words when an appropriate corpus of English-language text documents
are examined.

If you were interested in examining Zipf’s Law, you might write a computer program to read a
bunch of text documents and count how often each word appears. Depending on various
factors, one data structure you might consider using is a balanced binary search tree. There’s
another data structure you might want to consider instead, but we’re going to combine that with
a balanced BST for something fun after exam two.

Getting Started
Before you begin work on this project, there are a couple of chores you'll need to complete on
your ICS 46 VM to get it set up to proceed.

Refreshing your ICS 46 VM environment
Even if you previously downloaded your ICS 46 VM, you will probably need to refresh its
environment before proceeding with this project. Log into your VM and issue the command
ics46 version to see what version of the ICS 46 environment you currently have stored on your
VM. Note, in particular, the timestamp; if you see a version with a timestamp older than the one
listed below, you'll want to refresh your environment by running the command ics46 refresh to
download the latest one before you proceed with this project.

If you're unable to get outgoing network access to work on the ICS 46 VM — something that
afflicts a handful of students each quarter — then the ics46 refresh command won't work, but an
alternative approach is to download the latest environment from the link below, then to upload
the file on to your ICS 46 VM using SCP. (See the Project #0 write-up for more details on using
SCP.) Once the file is on your VM, you can run the command ​ics46b refresh_local
NAME_OF_ENVIRONMENT_FILE​, replacing ​NAME_OF_ENVIRONMENT_FILE ​with the name
of the file you uploaded; note that you'd need to be in the same directory where the file is when
you run the command.

The file is linked from the “public” ICS 46 page; click this link and enjoy the amazing web
design skill that put it together: ​https://www.ics.uci.edu/~mikes/ics46/

https://www.ics.uci.edu/~mikes/ics46/

Creating your project directory on your ICS 46 VM

A project template has been created specifically for this project, containing a similar structure to
the basic template you saw in Project #0.

Decide on a name for your project directory, then issue the command ​ics46b start
YOUR_CHOSEN_PROJECT_NAME project3 ​to create your new project directory using the
project3 template. (For example, if you wanted to call your project directory proj3, you would
issue the command ​ics46 start proj3 project3 ​to create it.) Now you're ready to proceed!

Choosing a project partner

You ​have the ​option​ ​to work with a second person for this assignment. If you do so, I expect
you to work via pair programming. That is, you ​may ​not​ ​split the assignment, such as by having
one person implement the AVL Tree while the other person implements the function that does
the counting, and the two are stitched together later. I reserve the right to ask one or both
project partners about the implementation and adjust the score accordingly.

Similarly, any academic dishonesty arising from a group will be treated as an offense by both
partners.

Information about registering partnerships and submitting partnered assignments will be
released mid-week. Keep an eye on Piazza if you are going this route. At time of this
document’s publication, your professor isn’t 100% sure how to handle that aspect.

Reviewing related material

I encourage you to read your textbook; in the second edition, section 10.1 covers Binary
Search Trees and 10.2 talks about AVL Trees. Your book is good at getting to the point, so this
should not be a long read. Furthermore, you should look at your notes from the associated
lectures.

Requirements

● Fill in MyAVLTree.hpp
○ Your implementation must be implemented via linked nodes in the tree format

from lecture. That is, you may not have a “vector-based tree.”
○ Your implementation must fit the interface given
○ Your implementation must be templated as provided.
○ You do not need to write a copy constructor or an assignment operator, but

knowing how to do so is generally a good thing.
○ You do need to implement the destructor.
○ All functions that need to be implemented have been started in the provided .hpp
○ For comparing keys, use the “natural” comparison offered by <.

Any test cases provided will have something for the key that has this defined.
○ Do not hard code for assumptions for how the tree will be used in the second part

of the program.

● Write function ​void countWords(std::istream & in, MyAVLTree<std::string,
unsigned> &counter)​ in ​proj3.cpp

○ This function will read words from the input stream. It will break them into given
words. All words with the same letters, in the same order, are considered the
same word: disregard capitalization. For example, “Bill” and “bill” are the same
word, even if the context might imply a person named William in one case and an
invoice in the other.

○ You can treat istream just like ​std::cin​ -- there is some sample code given.
Please let me know if it is insufficient, I can explain more.

○ You may assume that the given tree is empty when the function is first called.
This will certainly hold true for any test cases.

○ When this function returns, the tree parameter should now have a map of strings
to non-negative integers, where the associated value with a given string key is
the number of times that word appeared in the stream.

○ It is ​strongly recommended​ that you produce the tree in the following fashion:
for each word in the stream

if the word has already been seen
retrieve the count of how many times it has been seen.
increment that count.

otherwise
add this to the tree with a count of 1.

○ Your implementation does not have to be the most efficient thing ever, but it

cannot be “too slow.” In general, any test case that takes over a minute on the
grader’s computer may be deemed a wrong answer, even if it will later return a
correct one.

You ​may not​ use parts of the C++ standard template library in this assignment ​except​ for
std::vector​. Furthermore, ​std::vector​ may only be used when implementing the three
traversals (in-order, pre-order, post-order). For what it’s worth, you won’t miss it for this
assignment.

Deliverables

After using the gather script in your project directory to gather up your C++ source and header
files into a single ​project3.tar.gz​ file (as you did in previous assignments), submit that file (and 1

only that file) to Checkmate. Refer back to Project #0 if you need instructions on how to do that.
This time, it should give you the correct file name, insert innocent-looking face emoji here.

You will need to do this twice: the last code submitted before the checkpoint deadline will be
tested for the checkpoint. You will also have to submit for the full project.

You will submit your project via Checkmate. Keep in mind that that you're responsible for
submitting the version of the project that you want graded. We won't regrade a project simply
because you submitted the wrong version accidentally. (It's not a bad idea to look at the
contents of your tarball before submitting it; see Project #0 for instructions on how to do that.)

Can I submit after the deadline?
Yes, it is possible, subject to the late work policy for this course, which is described in the
section titled Late work in the course reference and syllabus. ​You may not submit for the
checkpoint late​.

Grading
Your grade for this project will be two-thirds correctness: I will run some number of test cases
using Google test. Each is worth some number of points and is graded based on whether or not
your code correctly determines if the puzzle has a solution, and if so, what it is. If it is
determined that your program does not make an attempt to solve the problem at hand, you will
not get these points, regardless of the result from testing. The tests will look a lot like the tests
in your Google Test starting directory for this assignment; if you pass those, you’re off to a good
start, but it’s not a guarantee.

25% of that correctness is the checkpoint, submitted the evening of November 11.

The other one-third is style. ICS 46 isn’t strictly about C++, but good programming style is
important. Your important variable names should have meaningful names, your code should be
appropriately commented, your AVL Tree should be an AVL tree and not hard-coded to how you
will be using it later in this assignment, and so on.

1 Hopefully you didn’t name your previous projects’ deliverables “project3.tar.gz” …

