
CS 135 Fall 2019
Becker, Clarke, Giesbrecht, Holtby, Lanctot, Reetz

Assignment: 7
Due: Tuesday, Nov 12th, 2019 9:00 pm

Language level: Beginning Student with List Abbreviations
Files to submit: bstd.rkt, itree.rkt, winsys.rkt

Warmup exercises: HtDP 14.2.1, 14.2.2
Practice exercises: HtDP 14.2.3, 14.2.4, 14.2.6

• Make sure you read the OFFICIAL A07 post on Piazza for the answers to frequently
asked questions.

• Unless stated otherwise, all policies from Assignment 06 carry forward.

• This assignment covers material up to and including Module 11, slide 48.

• The only list functions you may use are: cons, cons?, empty, empty?, first, second, rest,
list and append.

• You may only use the functions that have been discussed in the lecture slides, unless explicitly
allowed or disallowed in the question.

• You may not use reverse, abstract list functions or local on this assignment.

• Except for Question 3a, templates are not required, but you may find including them helpful.

• Solutions will be marked for both correctness [80%], test cases [10%] and style [10%]. Follow
the guidelines in the Style Guide, pages 1-17 (skipping section 3.7.4 for now).

• We will provide some starter code for each question.

Overview

A windowing environment in computer science is the software that manages different parts of the
display. In Windows 10 it is called the Desktop Window Manager and in macOS it is called Quartz
Compositor.

Both of these environments implement the WIMP (windows, icons, menus, pointer) paradigm. An
additional complexity that both of these operating systems support is allowing for multiple programs
to run (or appear to run) at the same time, so the windowing system must manage multiple (possibly
overlapping) windows.
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Our Goal

The task we will be investigating is when a user clicks the mouse on the screen, determining which
window and which part of the window they have clicked on. We will simplify this task by assuming
every component of a window is a rectangle (which includes squares).

A Window can have many components such as a Menu Bar (a rectangular area) that can be further
subdivided into Menu Items (which are smaller rectangles), a maximize button, a minimize button
and a close button. We will use symbols to identify each of these components, e.g. ’Close,
’Maximize, and ’Minimize. We will use the symbol ’None to identify the region outside of a
window; i.e. a rectangle is inside a window if and only if it is not associated with the label ’None.

Our Approach

We will start with some simple tasks (which will be in 1 dimension) and then work our way up to
identifying which part of a window a user has clicked on (which will be in 2 dimensions).

1. An Augmented Binary Search Tree Dictionary (BSTD) [25% Correctness]

For this question we will be using the following data definition for a binary search tree
dictionary which associates Natural numbers to Symbols.

(define-struct node (key val left right))
;; A Node is a (make-node Nat Sym BSTD BSTD)
;; requires: key > every key in left BSTD
;; key < every key in right BSTD

;; A binary search tree dictionary (BSTD) is one of:
;; * empty
;; * Node

(a) A range search in a BSTD considers all the keys within a range. First create a function
that produces the number of keys in the given range.

;; (range-count dict low high) produces the number of keys that
;; are >= low and < high in dict.
;; range-count: BSTD Nat Nat -> Nat
;; requires: low < high

For example in the BSTD illustrated in Figure 1, we would have the following.

(check-expect(range-count root1 20 30) 0)
(check-expect(range-count root1 10 12) 0)
(check-expect(range-count root1 10 13) 1)
(check-expect(range-count root1 12 13) 1)
(check-expect(range-count root1 4 8) 4)
(check-expect(range-count root1 0 15) 9)
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Figure 1

(b) Now create a function that produces a list of all the corresponding values in that range
ordered from the value with the lowest key to the value highest key. Hint: carefully
consider the order that the recursion is done. You may reorder the sequence of recursive
calls in the template as long as the base case is always first.
You may use the list function append for this question but you cannot use reverse.

;; (range-query dict low high) produces a list of values whose
;; keys in the dict are in the range >= low and < high. The
;; list of values produced are in ascending order by their key.
;; range-query: BSTD Nat Nat -> (listof Sym)
;; requires: low < high

For example, in the BSTD illustrated in Figure 1, we would have the following.

(check-expect(range-query root1 20 30) ’() )
(check-expect(range-query root1 10 12) ’() )
(check-expect(range-query root1 10 13) ’(y))
(check-expect(range-query root1 12 13) ’(y))
(check-expect(range-query root1 4 8) ’(g o o d))
(check-expect(range-query root1 0 15) ’(a b g o o d x y z))

The data definitions, the example in Figure 1, the function purposes and contracts will be
provided in a starter file that you can download, called bstd.rkt. Add your code to this file
and submit it as your solution to Q1.

2. Interval Trees (ITrees) [10% Correctness]

For this question we are breaking up the natural numbers into intervals. Each interval will
have a symbol associated with it. Consuming a Natural number n, use a binary search tree to
find which interval n is in and produce the symbol associated with that interval.

We will call this an ITree (for interval tree). The interior nodes will be called BNode (for
boundary nodes). The leaves are symbols.

(define-struct bnode (val left right))
;; A BNode is a (make-bnode Nat ITree ITree)
;; requires: val > every val in left ITree
;; val < every val in right ITree

;; An ITree (Interval Tree) is one of:
;; * a Sym (a leaf)
;; * a BNode (a boundary node)
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Given a natural number n and a BNode with value v
• if n < v, then the interval occurs in the left subtree;
• if n � v, then the interval occurs in the right subtree.

When a leaf is reached, produce the symbol that is associated with that leaf. For example, for
the ITree in Figure 2, consuming

• 0, 1 or 2 will produce ’None

• 3, 4 or 5 will produce ’a

• 6 or 7 will produce ’b

• 8 will produce ’c

• 9, 10, ... will produce ’None

Create a function called it-lookup (which consumes an ITree and a Nat) that produces the
symbol associated with the interval that the Nat is found in.

;; (it-lookup it n) produces the symbol from the it
;; that is associated with the interval that contains n
;; it-lookup: ITree Nat -> Sym

For example, for the ITree in Figure 2 the following should all pass.

(check-expect (it-lookup n6 0) ’None)
(check-expect (it-lookup n6 2) ’None)
(check-expect (it-lookup n6 3) ’a)
(check-expect (it-lookup n6 5) ’a)
(check-expect (it-lookup n6 6) ’b)
(check-expect (it-lookup n6 7) ’b)
(check-expect (it-lookup n6 8) ’c)
(check-expect (it-lookup n6 9) ’None)
(check-expect (it-lookup n6 10) ’None)

Figure 2

The data definitions, example from Figure 2, function purposes and contracts will be provided
in a starter file that you can download, called itree.rkt. Add your code to this file and
submit it as your solution to Q2.

3. Finding Rectangles in a Window (RTree) [45% Correctness]

For this question we will be moving from 1 dimension to 2 dimensions, breaking up the
XY plane (pixels on a screen) into different rectangles. Each rectangle will have a symbol
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associated with it. Consuming a posn (position on the screen) you will use a binary search
tree to find which rectangle the posn is in and what symbol is associated with that rectangle.
We will call this an RTree (for rectangle tree).

There will be two types of interior nodes in this tree. One type is called an XNode which will
divide the window into two parts, one with x values less than the XNode value (left) and one
with x values greater than or equal to the XNode value (right). Similarly, a YNode will divide
the window into two parts: those with y values less than the YNode value (below) and those
with y values greater than or equal to the YNode value (above). Again, the leaves are symbols,
which represent different rectangles that make up the window.

Our goal is to be able to represent something similar to the window that DrRacket uses, as in
Figure 3.

Figure 3

The data definitions for an RTree is as follows.

;; An RTree (Rectangle Tree) is one of:
;; * Sym (a leaf)
;; * XNode (a boundary node for an x value)
;; * YNode (a boundary node for a y value)

(define-struct xnode (val left right))
;; An XNode is a (make-xnode Nat RTree RTree)
;; requires: val > every xnode-val in left RTree
;; val < every xnode-val in right RTree

(define-struct ynode (val below above))
;; A YNode is a (make-ynode Nat RTree RTree)
;; requires: val > every ynode-val in below RTree
;; val < every ynode-val in above RTree
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(a) Templates
Create the templates for Rtree, XNode and YNode, namely rtree-template, xnode-template
and ynode-template.

(b) rt-lookup

Create a function, rt-lookup (which consumes an RTree and a Posn) and produces the
symbol associated with the rectangle in the RTree that contains that Posn.

;; (rt-lookup rt pos)
;; produces the symbol from rt that is associated with the
;; rectangle that contains pos
;; rt-lookup: RTree Posn -> Sym
;; Examples:
(check-expect (rt-lookup ’Desktop (make-posn 2 2))

’Desktop)
(check-expect (rt-lookup (make-xnode 5 ’left ’right) (make-posn 2 2))

’left)
(check-expect (rt-lookup (make-xnode 5 ’left ’right) (make-posn 5 5))

’right)
(check-expect (rt-lookup (make-ynode 5 ’bottom ’top) (make-posn 2 2))

’bottom)
(check-expect (rt-lookup (make-ynode 5 ’bottom ’top) (make-posn 5 5))

’top)

Besides the fairly eloborate RTree in Figure 3, we will provide you with two simpler
test cases. One that represents a square with the symbol ’None produced for any Posn
outside the square.

Figure 4

The second one will represent the window shown in Figure 5. This is just two modifica-
tions to Figure 4 where two nodes are added: a YNode called y60 to separate ’Content
from from the upper part of the window and an XNode x60 to separate ’Menu from ’x.
In both of these test cases, if nodes start with ’t’, ’b’, ’l’ or ’r’ they are referring to the
top, bottom, left and right boundaries of the window.

CS 135 — Fall 2019 Assignment 7 6



Figure 5

For your testing, you can use these two trees or simple variations of them.

(c) rt-max-x

It can be useful to know the maximum value of any XNode in the RTree. Create a
function that performs this task. Because an RTree can possibly have no XNodes (e.g. a
single leaf) rt-max-x can also produce ’None.

;; (rt-max-x rt)
;; produces the maximum value of any XNode in the rt
;; or produce 'None if there are no XNodes in the rt
;; rt-max-x: RTree -> (anyof Nat 'None)
;; Examples:
(check-expect (rt-max-x ’a) ’None)
(check-expect (rt-max-x (make-ynode 8 ’a ’b)) ’None)
(check-expect (rt-max-x (make-xnode 8 ’a ’b)) 8)

(d) Win and move-win

In order to allow for multiple windows, each window will have a name, which will
be a natural number called its wid (Window ID) and a corresponding RTree. Use the
following data definition.

(define-struct win (wid rtree))
;; A Win (Window) is a (make-win Nat RTree)
;; requires: points outside the window are labelled 'None

Create a function move-win which consumes a Win, an x value and a y value (which
could be negative) and produces a new Win with all the values in XNodes incremented by
x and all the values in the YNodes by incremented by y. Since windows can be moved
partially off the screen, we allow for negative numbers. In order to keeps things simple,
there is no need to check if the x and y values are too large or too small.
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;; (move-win wi x y)
;; moves the Win wi, x pixels along the x-axis
;; and y pixels in the y-axis.
;; move-win: Win Int Int -> Win

(e) WinSys and winsys-lookup

A WinSys (window system) is a list of (possibly overlapping) windows with the first
window in the list being the top window on the screen. The data definition is as follows.

;; A WinSys is one of:
;; * empty
;; * (cons Win WinSys)

Create a function (which consumes a WinSys and a Posn) that produces the wid (win-
dow id) of the top window that contains that point. It also produces the symbol that
corresponds to the rectangle in that window. Recall that if a point is associated with a
rectangle labelled ’None for a window, then that window does not contain that point. If
no window contains that point then produce the value (list 0 ’None).

;; (winsys-lookup ws pos)
;; produces the wid of the top window in ws that contains pos
;; and the Sym corresponding to the rectange that contains pos
;; winsys-lookup: WinSys Posn -> (list Nat Sym).

The data definitions, examples, and function purposes and contracts will be provided in a
starter file that you can download, called winsys.rkt. Add your code to this file and submit
it as your solution to Q3.

Enhancements: Reminder—enhancements are for your interest and are not to be handed in.

The material below first explores the implications of the fact that Racket programs can be viewed as
Racket data, before reaching back seventy years to work which is at the root of both the Scheme
language and of computer science itself.

The text introduces structures as a gentle way to talk about aggregated data, but anything that can be
done with structures can also be done with lists. Section 14.4 of HtDP introduces a representation of
Scheme expressions using structures, so that the expression (+ (* 3 3) (* 4 4)) is represented
as

(make-add
(make-mul 3 3)
(make-mul 4 4))
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But, as discussed in lecture, we can just represent it as the hierarchical list ’(+ (* 3 3) (* 4
4)). Scheme even provides a built-in function eval which will interpret such a list as a Scheme
expression and evaluate it. Thus a Scheme program can construct another Scheme program on the
fly, and run it. This is a very powerful (and consequently somewhat dangerous) technique.

Sections 14.4 and 17.7 of HtDP give a bit of a hint as to how eval might work, but the development
is more awkward because nested structures are not as flexible as hierarchical lists. Here we will use
the list representation of Scheme expressions instead. In lecture, we saw how to implement eval
for expression trees, which only contain operators such as +,-,*,/, and do not use constants.

Continuing along this line of development, we consider the process of substituting a value for a
constant in an expression. For instance, we might substitute the value 3 for x in the expression
(+ (* x x) (* y y)) and get the expression (+ (* 3 3) (* y y)). Write the function subst
which consumes a symbol (representing a constant), a number (representing its value), and the list
representation of a Scheme expression. It should produce the resulting expression.

Our next step is to handle function definitions. A function definition can also be represented as a
hierarchical list, since it is just a Scheme expression. Write the function interpret-with-one-def
which consumes the list representation of an argument (a Scheme expression) and the list repre-
sentation of a function definition. It evaluates the argument, substitutes the value for the function
parameter in the function’s body, and then evaluates the resulting expression using recursion. This
last step is necessary because the function being interpreted may itself be recursive.

The next step would be to extend what you have done to the case of multiple function definitions
and functions with multiple parameters. You can take this as far as you want; if you follow this
path beyond what we’ve suggested, you’ll end up writing a complete interpreter for Scheme (what
you’ve learned of it so far, that is) in Scheme. This is treated at length in Section 4 of the classic
textbook “Structure and Interpretation of Computer Programs”, which you can read on the Web
in its entirety at http://mitpress.mit.edu/sicp/ . So we’ll stop making suggestions in this
direction and turn to something completely different, namely one of the greatest ideas of computer
science.

Consider the following function definition, which doesn’t correspond to any of our design recipes,
but is nonetheless syntactically valid:

(define (eternity x)
(eternity x))

Think about what happens when we try to evaluate (eternity 1) according to the semantics we
learned for Scheme. The evaluation never terminates. If an evaluation does eventually stop (as is
the case for every other evaluation you will see in this course), we say that it halts.

The non-halting evaluation above can easily be detected, as there is no base case in the body of the
function eternity. Sometimes non-halting evaluations are more subtle. We’d like to be able to
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write a function halting?, which consumes the list representation of the definition of a function
with one parameter, and something meant to be an argument for that function. It produces true
if and only if the evaluation of that function with that argument halts. Of course, we want an
application of halting? itself to always halt, for any arguments it is provided.

This doesn’t look easy, but in fact it is provably impossible. Suppose someone provided us with
code for halting?. Consider the following function of one argument:

(define (diagonal x)
(cond
[(halting? x x) (eternity 1)]
[else true]))

What happens when we evaluate an application of diagonal to a list representation of its own
definition? Show that if this evaluation halts, then we can show that halting? does not work
correctly for all arguments. Show that if this evaluation does not halt, we can draw the same
conclusion. As a result, there is no way to write correct code for halting?.

This is the celebrated halting problem, which is often cited as the first function proved (by Alan
Turing in 1936) to be mathematically definable but uncomputable. However, while this is the
simplest and most influential proof of this type, and a major result in computer science, Turing
learned after discovering it that a few months earlier someone else had shown another function to
be uncomputable. That someone was Alonzo Church, about whom we’ll hear more shortly.

For a real challenge, definitively answer the question posed at the end of Exercise 20.1.3 of the
text, with the interpretation that function=? consumes two lists representing the code for the two
functions. This is the situation Church considered in his proof.
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