
Algorithms and Data Structures

Trees, Binary Trees,
Binary Search Trees & AVL Trees

The Cedars of Lebanon

DS & A Trees Slide # 2

Overview

❏ Tree Data Structure

❏ Binary Search Trees
➺ Support O(log2 N) operations
➺ Balanced trees

❏ B-trees for accessing secondary storage

❏ Applications

DS & A Trees Slide # 3

Trees
Generic

Tree

G is parent of N
and child of A

M is child of F and
grandchild of A

A is an ancestor of P
P is a descendant of A

DS & A Trees Slide # 4

Definitions

❏ A tree T is a set of nodes that form a directed acyclic
graph (DAG) such that:
➺ Each non-empty tree has a root node and zero or more

sub-trees T1, …, Tk

➺ Each sub-tree is a tree
➺ An internal node is connected to its children by a

directed edge

❏ Each node in a tree has only one parent
➺ Except the root, which has no parent

Recursive definition

DS & A Trees Slide # 5

Definitions
❏ A node with at least one child is an internal node
❏ Nodes with no children are leaves
❏ Nodes with the same parent are siblings
❏ A path from node n1 to nk is a sequence of nodes n1, n2, …, nk

such that ni is the parent of ni+1 for 1 ≤ i < k
➺ The length of a path is the number of edges on the path

(i.e., k-1)
➺ Each node has a path of length 0 to itself
➺ There is exactly one path from the root to each node in

a tree
➺ Nodes ni,…,nk are descendants of ni and ancestors of nk

➺ Nodes ni+1,…, nk are proper descendants
➺ Nodes ni,…,nk-1 are proper ancestors of ni

DS & A Trees Slide # 6

Definitions

DS & A Trees Slide # 7

Definitions: Node Relationships

B, C, H, I, P, Q, K, L, M, N
are leaves

B, C, D, E, F, G
are siblings

K, L, M
are siblings

The path from A to Q is A – E – J – Q (with length 3)
A, E, J are proper ancestors of Q
E, J, Q, I, P are proper descendants of A

DS & A Trees Slide # 8

Definitions: Depth, Height

❏ The depth of a node ni is the length of the path from the
root to ni
➺ The root node has a depth of 0
➺ The depth of a tree is the depth of its deepest leaf

❏ The height of a node ni is the length of the longest path
under ni’s subtree
➺ All leaves have a height of 0

❏ height of tree = height of root = depth of tree

Can there be
more than one?

DS & A Trees Slide # 9

Trees

Height of each node?

Height of tree?

Depth of each node?

Depth of tree?

e.g., height(E)=2, height(L)=0

= 3 (height of longest path from root)

e.g., depth(E)=1, depth(L)=2

= 3 (length of the path to the deepest node)

DS & A Trees Slide # 10

Implementation of Trees

❏ Solution 1: Vector of children

❏ Solution 2: List of children

Struct TreeNode
{
Object element;
vector<TreeNode> children;

}

Struct TreeNode
{
Object element;
list<TreeNode> children;

}

Direct access to children[i]
but… Need to know max
allowed children in advance
& more space

Number of children can be
dynamically determined
but…. more time to access
children

DS & A Trees Slide # 11

Implementation of Trees

❏ Solution 3: Left-child, right-sibling

Struct TreeNode
{
Object element;
TreeNode firstChild;
TreeNode nextSibling;

}

Guarantees 2 pointers per node
(independent of #children)

But…

Access time proportional to #children

Also called “First-child, next-sibling”

DS & A Trees Slide # 12

Binary Trees (aka. 2-way trees)

❏ A binary tree is a tree
where each node has no
more than two children.

❏ If a node is missing one
or both children, then
that child pointer is NULL

struct BinaryTreeNode
{
Object element;
BinaryTreeNode leftChild;
BinaryTreeNode rightChild;

}

DS & A Trees Slide # 13

Binary Trees (aka. 2-way trees)

DS & A Trees Slide # 14

Example: Expression Trees

❏ Store expressions in a binary tree
➺ Leaves of tree are operands (e.g., constants, variables)
➺ Other internal nodes are unary or binary operators

❏ Used by compilers to parse and evaluate expressions
➺ Arithmetic, logic, etc.

❏ E.g., (a + b * c) + ((d * e + f) * g)

DS & A Trees Slide # 15

Example: Expression Trees

❏ Evaluate expression
➺ Recursively evaluate left and right subtrees
➺ Apply operator at root node to results from subtrees

❏ Traversals (recursive definitions)
➺ Post-order: left, right, root
➺ Pre-order: root, left, right
➺ In-order: left, root, right

DS & A Trees Slide # 16

Traversals for tree rooted under an arbitrary “node”

❏ Pre-order: node - left - right

❏ Post-order: left - right - node

❏ In-order: left - node - right

DS & A Trees Slide # 17

Traversals

❏ Pre-order: + + a * b c * + * d e f g

❏ Post-order: a b c * + d e * f + g * +

❏ In-order: a + b * c + d * e + f * g

DS & A Trees Slide # 18

Example: Expression Trees

❏ Constructing an expression tree from postfix notation
➺ Use a stack of pointers to trees
➺ Read postfix expression left to right
➺ If operand, then push on stack
➺ If operator, then:

§ Create a BinaryTreeNode with operator as the element
§ Pop top two items off stack
§ Insert these items as left and right child of new node
§ Push pointer to node on the stack

DS & A Trees Slide # 19

Example: Expression Trees

❏ E.g., a b + c d e + * *

a b

(1)
top

a b

(3)

+ edc

top

a b

(2)

+

top

a b

(4)

+

ed

c

top

+

stack

a b + c d e + * *a b + c d e + * *a b + c d e + * *

DS & A Trees Slide # 20

Example: Expression Trees

❏ E.g., a b + c d e + * *

a b

(5)

+

ed

c

top

+

*

a b

(6)

+

ed

c

top

+

*

*

a b + c d e + * *a b + c d e + * *

DS & A Trees Slide # 21

Binary Search Trees

❏ “Binary search tree (BST)”
➺ For any node n,

items in left subtree of n ≤ item in node n
item in node n ≤ items in right subtree of n

Which one is a BST and which one is not?

DS & A Trees Slide # 22

Binary Search Tree
❏ Binary search tree: binary tree in symmetric order.

❏ Binary tree is either:
➺ Empty
➺ A key-value pair and two binary trees

❏ Symmetric order:
➺ Keys in each node
➺ No smaller than left subtree
➺ No larger than right subtree

51

14 72

64

33

84 9943

53 97

25

x

A B

smaller
than x

larger
than x

DS & A Trees Slide # 23

Binary Search Tree Construction
❏ Insert the following keys into BST: LPMXGNIHCRESA

C

E

A

S

R
H

I

C

E

A

S

R
H

C

E

A

S

R

E

A

S

R

E

A

S

A

S

A

C

E

A

X
S

R
H

G I
N

M P

L

C

E

A

X
S

R
H

G I
N

M P

C

E

A

X
S

R
H

G I
N

M

C

E

A

X
S

R
H

G I
N

C

E

A

S

R
H

G I
N

C

E

A

S

R
H

I
N

DS & A Trees Slide # 24

Binary Search Tree Delete
❏ To delete a node:

➺ Case 1 (zero children): just remove it.
➺ Case 2 (one child): pass the child up.
➺ Case 3 (two children): find the next largest node using right-left*

or left-right*, swap with next largest, remove as in Case 1 or 2.

C

E

A

X
S

R
H

G I
N

M P

L

C

E

A

X
S

R
H

G I
N

M P

L

C

E

A

X
S

R
H

G I
N

M P

L

DS & A Trees Slide # 25

Tree Shape
❏ Tree shape

➺ Many BSTs correspond to same input data
➺ Have different tree shapes
➺ However, performance depends on shape

51

14 72

64

33

84 9943

53 97

25

25

14 72

53

64

84 9933

43 97

51

DS & A Trees Slide # 26

Searching in BSTs

Contains (T, x)
{
if (T == NULL)
then return NULL
if (T.element == x)
then return T
if (x < T.element)
then return Contains (T.leftChild, x)
else return Contains (T.rightChild, x)

}

Typically assume no duplicate elements.
If duplicates, then store counts in nodes,
or each node has a list of objects.

DS & A Trees Slide # 27

Searching in BSTs

❏ Complexity of searching a BST with N nodes is O(?)

❏ Complexity of searching a BST of height h is O(h)

❏ h = O(N)

1

2

3

4

6

8

1

2

3

4

6

8

DS & A Trees Slide # 28

Searching in BSTs

❏ Finding the minimum element
➺ Smallest element in left subtree

❏ Complexity ?

findMin (T)
{
if (T == NULL)
then return NULL
if (T.leftChild == NULL)
then return T
else return findMin (T.leftChild)

}

O(h)

DS & A Trees Slide # 29

❏ Finding the maximum element
➺ Smallest element in left subtree

❏ Complexity ?

Searching in BSTs

findMax (T)
{
if (T == NULL)
then return NULL
if (T.rightChild == NULL)
then return T
else return findMax (T.rightChild)

}

O(h)

DS & A Trees Slide # 30

Printing BSTs

❏ In-order traversal ==> sorted

❏ Complexity?

PrintTree (T)
{
if (T == NULL)
then return
PrintTree (T.leftChild)
cout << T.element
PrintTree (T.rightChild)

}

1 2 3 4 6 8
Q(n)

DS & A Trees Slide # 31

Inserting into BSTs

❏ E.g., insert 5

(1)

(2)

(3)

(4)

Old tree: New tree:

insert(5)

DS & A Trees Slide # 32

Inserting into BSTs

❏ “Search” for element until reach end of tree;
insert new element there

Insert (x, T)
{
if (T == NULL)
then T = new Node(x)
else

if (x < T.element)
then if (T.leftChild == NULL)

then T.leftChild = new Node(x)
else Insert (x, T.leftChild)

else if (T.rightChild == NULL)
then (T.rightChild = new Node(x)
else Insert (x, T.rightChild)

}

Complexity?

DS & A Trees Slide # 33

Removing from BSTs
There are two cases for removal

❏ Case 1: Node to remove has 0 or 1 child
➺ Action: Just remove it and make appropriate adjustments to

retain BST structure

E.g., remove(4):

(1)

(2)

(3)

6

2 8

1 4

(1)

(2)

(3)

Node has no children
Node has 1 child

remove(4):

DS & A Trees Slide # 34

Removing from BSTs
❏ Case 2: Node to remove has 2 children

➺ Action:
§ Replace node element with successor
§ Remove successor (case 1)

E.g., remove(2):

(1)

(2)

Old tree:

New tree:

Becomes
case 1 here

Can predecessor
be used instead?

DS & A Trees Slide # 35

Removing from BSTs
Remove (x, T)
{

if (T == NULL)
then return
if (x == T.element)
then if ((T.left == NULL) && (T.right != NULL))

then T = T.right
else if ((T.right == NULL) && (T.left != NULL))

then T = T.left
else if ((T.right == NULL) && (T.left == NULL))

then T = NULL
else {

successor = findMin (T.right)
T.element = successor.element
Remove (T.element, T.right)

}
else if (x < T.element)
then Remove (x, T.left) // recursively search
else Remove (x, T.right) // recursively search

}

Complexity?

CASE 2

CASE 1

DS & A Trees Slide # 36

BST Class Interface

DS & A Trees Slide # 37

BST Class Interface

What’s the difference
between a struct and a
class?

Pointer to tree node
passed by reference
so it can be reassigned
within function.

DS & A Trees Slide # 38

Implementation of BST

Public member
functions calling
private recursive
member functions.

DS & A Trees Slide # 39

Implementation of BST

notice order
of tests!

Why?

DS & A Trees Slide # 40

Implementation of BST – Private findMin & findMax

recursive
version

non-recursive
version

DS & A Trees Slide # 41

Implementation of BST –Private Insert

Case 2:
Copy successor data
Delete successor

Case 1: Just delete it

Algorithms Trees Slide # 42

DS & A Trees Slide # 43

Implementation of BST

Post-order traversal

Can pre-order be used here?

DS & A Trees Slide # 44

BST Analysis
❏ printTree

➺ Q(N)

❏ insert, remove, contains, findMin, findMax
➺ O(h), where h = height of tree

❏ Worst case: h = ?

❏ Best case: h = ?

❏ Average case: h = ?

Q(N)

Q(lg N)

Q(lg N)

DS & A Trees Slide # 45

Randomly Generated 500-node BST (insert only)
Average node depth = 9.98
log2 500 = 8.97

DS & A Trees Slide # 46

Previous BST after 5002 Random Alternate
Insert/Remove Operations

Average node depth = 12.51
log2 500 = 8.97

Starting to become unbalanced….
need balancing!

DS & A Trees Slide # 47

Binary Search Tree: Balance
❏ Complexity of BST operations:

➺ proportional to the length of the path from the root to the
node being manipulated.

❏ In a well balanced tree, the length of the longest path is roughly
log n.
➺ E.g.: 1 million entries --> longest path is log2 1,048,576 = 20.

❏ For a thin, unbalanced tree, operations become O(n):
➺ E.g.: elements are added to tree in sorted order.

==> result: skewed tree!

❏ Balance is Important!

DS & A Trees Slide # 48

BST Average-Case Analysis

❏ After randomly inserting N nodes into an empty BST
➺ Average depth = O(log2 N)

❏ After Θ(N2) random insert/remove pairs
into an N-node BST
➺ Average depth = Θ(N1/2)

❏ What is the difference?
➺ Example:

§ log2 106 less than 20
§ 1000000½equal to 1000

❏ Solutions?
AVL Trees (next)
Red-Black BSTs...

Simulating
Setup Phase

Simulating
Production Phase

Simulating a BST Lifecycle

DS & A Trees Slide # 49

Requiring Complete Trees!
❏ A complete binary tree has the shortest overall path length for any

binary tree.
➺ The longest path in a complete binary tree with n elements is

guaranteed to be no longer than ceiling(log n).
➺ If we can keep our tree complete, we’re set for fast search times.

❏ Very costly to maintain a complete binary tree.
➺ E.g. insert “1” to the tree on the left causes every element to be

moved ... i.e. this operation is O(n)

❏ Instead, use height-balanced binary trees:
➺ for each node, the height difference between the left and right

subtrees is at most one.

5

3 7

2 4 6

4

2 6

1 3 5 7

DS & A Trees Slide # 50

A Balanced Binary Tree in Nature

The palm Hyphaene compressa (Arecaceae: Coryphoideae: Borasseae: Hyphaeninae)

growing wild in Kenya. Palms are often termed “the tree of life” in an economic

sense and Hyphaene compressa is no exception, providing numerous resources to

local people and wildlife. However, this palm also serves as a vegetable

representation of “the tree of life” in a phylogenetic sense, its dichotomously

branched stem (unusual in palms) resulting here in a fully resolved and

perfectly balanced tree. [sysbio.oxfordjournals.org]

DS & A Trees Slide # 51

Balanced Binary Search Trees

❏ AVL (Adelson, Velskii and Landis)

➺ Height of left and right subtrees at every node in BST
differ by at most 1

➺ Balance forcefully maintained for every update
(via rotations)

➺ BST depth always O(log2 n)

DS & A Trees Slide # 52

AVL Trees

x

Which of these is a valid AVL tree?

This is an AVL tree This is NOT an AVL tree

h=2

h=1
h=2

h=0

Note: height violation not
allowed at ANY node

DS & A Trees Slide # 53

❏ Worst-case Height of AVL tree is Q(log2 N)
➺ Actually, 1.44 log2(N+2) – 1.328
➺ in practice, slightly more than log n

❏ Intuitively, enforces that a tree is “sufficiently” populated before
height is grown
➺ Minimum #nodes S(h) in an AVL tree of height h :

§ for h = 1, S(h) = 2
§ for h > 1, S(h) = S(h-1) + S(h-2) + 1

(Similar to Fibonacci recurrence)
= Q(2h)

§ for example S(9) = 143

AVL Trees

DS & A Trees Slide # 54

Maintaining Balance Condition
❏ If we can maintain balance condition, then the insert, remove,

find operations are O(lg N)
➺ How? By above observation with recurrence relation

§ N = O(2h) => h = O(lg(N))

❏ Maintain height h(t) at each node t
h(t) = max { h(t.left), h(t.right) } + 1
h(empty tree) = -1

❏ Which operations can upset balance condition?

DS & A Trees Slide # 55

AVL Insert
❏ Insert can violate AVL balance condition
❏ Can be fixed by a rotation

Rotating 7-8
restores balance

violation

Insert(6):
balanced

Inserting 6 violates
AVL balance condition

DS & A Trees Slide # 56

AVL Insert

❏ Only nodes along path to
insertion could have their
balance altered

❏ Follow the path back to root,
looking for violations

❏ Fix the deepest node with
violation using single or double
rotations

root

inserted
node

Ch
ec

k
fo

r
vi

ol
at

io
ns

Q) Why is fixing the deepest node with violation sufficient?
Hint: consider the upcoming examples...

x

Fix at the
violated node

DS & A Trees Slide # 57

Identifying Cases for AVL Insert

k

Let this be the node with the
violation (i.e, imbalance)

(nearest to the last insertion site)

Insert

CASE 1

Insert

CASE 2

Insert

CASE 3

Insert

CASE 4

right childleft child

le
ft

su

bt
re

e

le
ft

su

bt
re

e

ri
gh

t
su

bt
re

e

ri
gh

t
su

bt
re

e

DS & A Trees Slide # 58

AVL Insert – how to fix a node with height violation?
❏ Assume the violation after insert is at node k

❏ Four cases leading to violation:
➺ CASE 1: Insert into the left subtree of the left child of k

➺ CASE 2: Insert into the right subtree of the left child of k

➺ CASE 3: Insert into the left subtree of the right child of k

➺ CASE 4: Insert into the right subtree of the right child of k

❏ Cases 1 and 4 are symmetric and handled by “single rotation”

❏ Cases 2 and 3 are symmetric and handled by “double rotation”

DS & A Trees Slide # 59

Case 1 for AVL insert

Insert

CASE 1

Let this be the node with the
violation (i.e, imbalance)

(nearest to the last insertion site)

DS & A Trees Slide # 60

AVL Insert (single rotation)

❏ Case 1: Single rotation right

Imbalance

AVL balance condition okay?
BST order okay?

inserted

Invariant: X < k1 < Y < k2 < Z

Before: After:
Balanced

Remember:
X, Y, Z could be empty trees,
or single node trees,
or mulltiple node trees.

h

h + 1

h - 1

DS & A Trees Slide # 61

AVL Insert (single rotation)

❏ Case 1 example

inserted

ImbalanceBefore: After: Balanced

DS & A Trees Slide # 62

AVL Insert

❏ General approach for fixing violations after AVL tree
insertions
1. Locate the deepest node with the height imbalance
2. Locate which part of its subtree caused the imbalance

§ This will be same as locating the subtree site of insertion
3. Identify the case (1 or 2 or 3 or 4)
4. Do the corresponding rotation.

DS & A Trees Slide # 63

Case 4 for AVL insert

Let this be the node with the
violation (i.e, imbalance)

(nearest to the last insertion site)

Insert

CASE 4

DS & A Trees Slide # 64

AVL Insert (single rotation)

❏ Case 4: Single rotation left

AVL balance condition okay?
BST order okay?

inserted

Imbalance

Invariant: X < k1 < Y < k2 < Z

Before: After: Balanced

DS & A Trees Slide # 65

AVL Insert (single rotation)

❏ Case 4 example

inserted

Imbalance
4

2 5

6

7

4

2 6

75

Imbalance

Fix this
node

will this be true always?

balanced

DS & A Trees Slide # 66

Case 2 for AVL insert

Insert

CASE 2

Let this be the node with the
violation (i.e, imbalance)

(nearest to the last insertion site)

DS & A Trees Slide # 67

AVL Insert

❏ Case 2: Single rotation fails

Imbalance Imbalance
remains!

inserted

Think of Y as =

Single rotation does not fix
the imbalance!

Before: After:

Note: X, Z can be empty trees, or single node trees, or mulltiple node trees
But Y should have at least one or more nodes in it because of insertion.

DS & A Trees Slide # 68

AVL Insert

❏ Case 2: Left-right double rotation

Imbalance

AVL balance condition okay?
BST order okay?

inserted

#1

#2

=X

=Z

=Y

Invariant: A < k1 < B < k2 < C < k3 < D

Balanced!

=> Make k2 take k3’s placeCan be implemented as two
successive single rotations

Before: After:

DS & A Trees Slide # 69

AVL Insert (double rotation)

❏ Case 2 example

inserted

Imbalance

5

2 6

3

4

1 #1

Approach: push 3 to 5’s place

3

2 5

41 6

Balanced!

#2

5

3 6

4

1

2

DS & A Trees Slide # 70

Case 3 for AVL insert

Insert

CASE 3

Let this be the node with the
violation (i.e, imbalance)

(nearest to the last insertion site)

DS & A Trees Slide # 71

AVL Insert

❏ Case 3: Right-left double rotation

imbalance

AVL balance condition okay?
BST order okay?inserted

#1

#2

Invariant: A < k1 < B < k2 < C < k3 < D

Balanced!

Case 3 == mirror case of Case 2

DS & A Trees Slide # 72

Exercise for AVL deletion/remove

10

7

5

2

8

15

13 19

11 14 17 25

16 18

Delete(2): ?
imbalance

Fix (by case 4)

Q) How much time will it take
to identify the case?

DS & A Trees Slide # 73

Alternative for AVL Remove (Lazy deletion)
❏ Assume remove accomplished using lazy deletion

➺ Removed nodes only marked as deleted, but not actually
removed from BST until some cutoff is reached

➺ Unmarked when same object re-inserted
§ Re-allocation time avoided

➺ Does not affect O(log2 N) height as long as deleted nodes are
not in the majority

➺ Does require additional memory per node

❏ Can accomplish remove without lazy deletion

DS & A Trees Slide # 74

AVL Tree Implementation (C++ Version)

Case 1

Case 2

Case 4

Case 3

Insert
first, and
then fix

Locate insertion
site relative to
the imbalanced
node (if any)

Q) Is it guaranteed
that the deepest
node with imbalance
is the one that gets
fixed?

A) Yes, recursion
will ensure that.

There is some hidden
magic... in the recursion!

Think about it as we go
through the code...

Similarly, write rotateWithRightChild() for case 4
Algorithms Trees Slide # 76

Rotation

Order is important

// #1
// #2

Algorithms Trees Slide # 77
Similarly, write doubleWithRightChild() for case 3

DS & A Trees Slide # 78

AVL Tree Implementation (Java Version)
// AvlTree class
//
// CONSTRUCTION: with no initializer
//
// **** Public Operations
// void insert(x) --> Insert x
// void remove(x) --> Remove x (unimplemented)
// boolean contains(x) --> Return true if x is present
// Comparable findMin() --> Return smallest item
// Comparable findMax() --> Return largest item
// boolean isEmpty() --> Return true if empty; else false
// void makeEmpty() --> Remove all items
// void printTree() --> Print tree in sorted order
// *** Errors
// Throws UnderflowException as appropriate

/**
* Implements an AVL tree.
* Note that all "matching" is based on the compareTo method.
*/

DS & A Trees Slide # 79

AVL Tree Implementation
public class AvlTree<AnyType extends Comparable<? super AnyType>>
{

/* The tree root */
private AvlNode<AnyType> root;

/**
* Construct the tree.
*/
public AvlTree()
{

root = null;
}

DS & A Trees Slide # 80

AVL Tree Implementation – inner class AvlNode
private static class AvlNode<AnyType>

{
AnyType element; // The data in the node
AvlNode<AnyType> left; // Left child
AvlNode<AnyType> right; // Right child
int height; // Height

// Constructors
AvlNode(AnyType theElement)
{

this(theElement, null, null);
}

AvlNode(AnyType theElement,
AvlNode<AnyType> lt,
AvlNode<AnyType> rt)

{
element = theElement;
left = lt;
right = rt;
height = 0;

}
}

DS & A Trees Slide # 81

AVL Tree Implementation – isEmpty & makeEmpty
/**
* Test if the tree is logically empty.
* @return true if empty, false otherwise.
*/
public boolean isEmpty()
{

return root == null;
}

/**
* Make the tree logically empty.
*/
public void makeEmpty()
{

root = null;
}

DS & A Trees Slide # 82

AVL Tree Implementation – findMin
/**
* Find the smallest item in the tree.
* @return smallest item or null if empty.
*/
public AnyType findMin()
{

if(isEmpty())
throw new UnderflowException();

return findMin(root).element;
}

/**
* Internal method to find the smallest item in a subtree.
* @param t the node that roots the tree.
* @return node containing the smallest item.
*/
private AvlNode<AnyType> findMin(AvlNode<AnyType> t)
{

if(t == null)
return t;

while(t.left != null)
t = t.left;

return t;
}

DS & A Trees Slide # 83

AVL Tree Implementation – findMax
/**
* Find the largest item in the tree.
* @return the largest item of null if empty.
*/
public AnyType findMax()
{

if(isEmpty())
throw new UnderflowException();

return findMax(root).element;
}

/**
* Internal method to find the largest item in a subtree.
* @param t the node that roots the tree.
* @return node containing the largest item.
*/
private AvlNode<AnyType> findMax(AvlNode<AnyType> t)
{

if(t == null)
return t;

while(t.right != null)
t = t.right;

return t;
}

DS & A Trees Slide # 84

AVL Tree Implementation – printTree
/**
* Print the tree contents in sorted order.
*/
public void printTree()
{

if(isEmpty())
System.out.println("Empty tree");

else
printTree(root);

}

/**
* Internal method to print a subtree in sorted order.
* @param t the node that roots the tree.
*/
private void printTree(AvlNode<AnyType> t)
{

if(t != null)
{

printTree(t.left);
System.out.println(t.element);
printTree(t.right);

}
}

DS & A Trees Slide # 85

AVL Tree Implementation – contains
/**
* Return the height of node t, or -1, if null.
*/
private int height(AvlNode<AnyType> t)
{

return t == null ? -1 : t.height;
}

/**
* Find an item in the tree.
* @param x the item to search for.
* @return true if x is found.
*/
public boolean contains(AnyType x)
{

return contains(x, root);
}

DS & A Trees Slide # 86

AVL Tree Implementation – internal contains
/**
* Internal method to find an item in a subtree.
* @param x is item to search for.
* @param t the node that roots the tree.
* @return true if x is found in subtree.
*/
private boolean contains(AnyType x, AvlNode<AnyType> t)
{

while(t != null)
{

int compareResult = x.compareTo(t.element);

if(compareResult < 0)
t = t.left;

else if(compareResult > 0)
t = t.right;

else
return true; // Match

}

return false; // No match
}

DS & A Trees Slide # 87

AVL Tree Implementation – insert & remove
/**
* Remove from the tree. Nothing is done if x is not found.
* @param x the item to remove.
*/
public void remove(AnyType x)
{

System.out.println("Sorry, remove unimplemented");
}

/**
* Insert into the tree; duplicates are ignored.
* @param x the item to insert.
*/
public void insert(AnyType x)
{

root = insert(x, root);
}

DS & A Trees Slide # 88

AVL Tree Implementation – internal insert (1/2)
/**
* Internal method to insert into a subtree.
* @param x the item to insert.
* @param t the node that roots the subtree.
* @return the new root of the subtree.
*/
private AvlNode<AnyType> insert(AnyType x, AvlNode<AnyType> t)
{

if(t == null)
return new AvlNode<AnyType>(x, null, null);

int compareResult = x.compareTo(t.element);

if(compareResult < 0)
{

t.left = insert(x, t.left);
if(height(t.left) - height(t.right) == 2)

if(x.compareTo(t.left.element) < 0)
t = rotateWithLeftChild(t);

else
t = doubleWithLeftChild(t);

}

Case 1

Case 2

Insert
first, and
then fix

DS & A Trees Slide # 89

AVL Tree Implementation – internal insert (2/2)
else if(compareResult > 0)
{

t.right = insert(x, t.right);

if(height(t.right) - height(t.left) == 2)
if(x.compareTo(t.right.element) > 0)

t = rotateWithRightChild(t);
else

t = doubleWithRightChild(t);
}
else

; // Duplicate ... do nothing

t.height = Math.max(height(t.left), height(t.right)) + 1;
return t;

}

Case 4

Case 3

Insert
first, and
then fix

Q) Is it guaranteed that the
deepest node with imbalance is
the one that gets fixed?

A) Yes, recursion will ensure this!

WHY?

update height
after rotation

DS & A Trees Slide # 90

AVL Tree Implementation – rotateWithLeftChild

/**
* Rotate binary tree node with left child.
* For AVL trees, this is a single rotation for case 1.
* Update heights, then return new root.
*/
private AvlNode<AnyType> rotateWithLeftChild(AvlNode<AnyType> k2)

{

AvlNode<AnyType> k1 = k2.left;

k2.left = k1.right;

k1.right = k2;

k2.height = Math.max(height(k2.left), height(k2.right)) + 1;

k1.height = Math.max(height(k1.left), k2.height) + 1;

return k1;

}

Rotation

Order is important

DS & A Trees Slide # 91

AVL Tree Implementation – rotateWithRightChild

/**
* Rotate binary tree node with right child.
* For AVL trees, this is a single rotation for case 4.
* Update heights, then return new root.
*/
private AvlNode<AnyType> rotateWithRightChild(AvlNode<AnyType> k1)
{

AvlNode<AnyType> k2 = k1.right;
k1.right = k2.left;
k2.left = k1;
k1.height = Math.max(height(k1.left), height(k1.right)) + 1;
k2.height = Math.max(height(k2.right), k1.height) + 1;
return k2;

}

Similarly, write rotateWithRightChild() for case 4

DS & A Trees Slide # 92

AVL Tree Implementation – doubleWithLeftChild

/**
* Double rotate binary tree node: first left child
* with its right child; then node k3 with new left child.
* For AVL trees, this is a double rotation for case 2.
* Update heights, then return new root.
*/
private AvlNode<AnyType> doubleWithLeftChild(AvlNode<AnyType> k3)
{

k3.left = rotateWithRightChild(k3.left);
return rotateWithLeftChild(k3);

}

DS & A Trees Slide # 93

AVL Tree Implementation – doubleWithRightChild

/**
* Double rotate binary tree node: first right child
* with its left child; then node k1 with new right child.
* For AVL trees, this is a double rotation for case 3.
* Update heights, then return new root.
*/
private AvlNode<AnyType> doubleWithRightChild(AvlNode<AnyType> k1)
{

k1.right = rotateWithLeftChild(k1.right);
return rotateWithRightChild(k1);

}

DS & A Trees Slide # 94

AVL Tree Implementation – main as test driver
/* Test program */
public static void main(String [] args)
{

AvlTree<Integer> t = new AvlTree<Integer>();
final int NUMS = 4000;
final int GAP = 37;

System.out.println("Checking… (no more output means success)”);

for(int i = GAP; i != 0; i = (i + GAP) % NUMS)
t.insert(i);

if(NUMS < 40)
t.printTree();

if(t.findMin() != 1 || t.findMax() != NUMS - 1)
System.out.println("FindMin or FindMax error!");

for(int i = 1; i < NUMS; i++)
if(!t.contains(i))

System.out.println("Find error1!");
}

}

The Lonely Cypress Tree – Monterey, California

