JAVA ASSIGNMENT 3
Do not use any elements of the Java libraries, except elements of java.lang and java.io packages.
Exercise A and B need to be submitted separately.
A. [bookmark: _GoBack]STACK BASED CALCULATOR (Note: Only use LinkedList for this exercise. Do not use ArrayList)
A stack or cellar memory is an abstract data structure that is structured like a list. In the case of a stack, it is only possible to add a new element at the first position, to remove the last added element or to return the value of the last added value. The internal structure of the stack is hidden from the user - they can only add and remove elements. However, the user should have access to further information, such as a textual representation and the size of the stack.
A pocket calculator uses a stack as a storage model, i.e. numbers can be added one after the other and mathematical operations can be carried out. The top two numbers are always taken from the stack and the result of the operation is placed on the stack. The goal of the task is to develop an interactive user interface that enables interaction with the calculator with integers. Make sure there is a clear separation between the user interface, the logic of the calculator and the stack. Implement the following commands. Your program should be able to process the specified entries and output an error message (starting with Error, ␣) in the (specified possible) error cases. If the entry is valid, the specified output should be output. If an unknown command is entered, an error message is issued.
Note: You can assume that transferred numbers can always be converted into integers without errors.
1. push <number>
• number: Input an integer
• Functionality: puts number on the stack of the calculator
• Output: OK
• Possible errors:
 - Invalid number of arguments
 - Symbol in parameter number, which is not a number
2. pop
• Functionality: removes the first element of the stack. If the stack is empty, the stack does not change.
• Output: OK
• Possible error case: invalid number of arguments
3. peek
• Functionality: Outputs the top element of the stack and does not change the stack.
• Output: The string representation of the topmost element of the stack
• possible errors:
 - invalid number of arguments
 - the stack is empty

4. add
• Functionality: Adds the top two elements of the stack and places the result on the stack.
• Output: OK
• possible errors:
 - invalid number of arguments
 - the stack has less than 2 elements
5. sub
• Functionality: Subtracts the second top element from the topmost element and sets the result on the stack.
• Output: OK
• possible errors:
 - invalid number of arguments
 - the stack has less than 2 elements
6. multiply
• Functionality: Multiplies the top two elements of the stack and places the result on the stack.
• Output: OK
• possible errors:
 - invalid number of arguments
 - the stack has less than 2 elements
7. divide
• Functionality: divides the top element by the second top element and puts the result (as an integer) on the stack.
• Output: OK
• possible errors:
 - invalid number of arguments
 - the stack has less than 2 elements
 - the second top element is a 0

8. if-else
• Functionality: takes the top element from the stack; if this is a 0, the second top element is removed from the stack. Otherwise, the third top element is removed from the stack. The top element remains on the stack.
• Output: OK
• possible errors:
 - invalid number of arguments
 - the stack has less than 3 elements
9. print
• Functionality: Outputs a textual representation of the stack. The individual elements are separated by commas (without spaces). Output begins at the top of the stack. If the stack is empty, an empty line is simply output.
• Output: <top element>,<second top element>,...,<bottom element>
• Possible error case: invalid number of arguments
10. revert
• Functionality: Inverts the stack so that, for example, the top element is the bottom element. i.e the stack 1,2,3 becomes 3,2,1. If the stack is empty, the stack does not change.
• Output: OK
• Possible error case: invalid number of arguments
11. reset
• Functionality: Completely empties the calculator's memory
• Output: OK
• Possible error case: invalid number of arguments
12.quit
• Functionality: exits the program
• Output: no output
• Possible error case: invalid number of arguments

B. HARD DRIVES
In this task, a simplified model of a storage medium is to be created. When doing this, consider whether the attributes in question are a class or an object variable and where constants are better suited. Pay attention to a suitable data encapsulation as well as suitable visibility.
Write a class for modeling Hard Disk Drives (HDD). An HDD can be addressed via a hardware interface. In this case, a hardware interface can only be ATA, SATA, SCSI or SAS. Which data type is best suited for modeling this interface? Justify your answer. Write your answer as a comment above the declaration of the interface attribute.
Another characteristic of a hard disk is Input/Output operations Per Second (IOPS) to represent the speed of a hard disk during input and output. An HDD contains several disks for storing data (also called platter).
A platter is modeled as follows:
A platter consists of several sectors of identical size for storing data. The sectors in the context of a platter are simplified in the Platter by two attributes: the size of a sector in bytes and the number of sectors of the platter. Also note that a sector in this task is always 512 bytes in size. Since a sector can either be intact or defective, the number of sectors of a platter only refers to intact sectors. You do not need to model these two states of a sector explicitly in this task. Write a method that calculates the size of a plate in bytes as the product of the size of its sectors and the number of its sectors. Also add getter and/or setter methods for appropriate attributes of this class. Write another method that accepts a number of bad sectors and reduces the number of intact sectors by this number. Create a constructor that only accepts the number of sectors and uses this to initialize the appropriate attributes of a platter. In the context of this constructor, use the methods that have already been implemented to keep the attributes consistent.
Now complete the HDD class as follows: An HDD has an attribute that shows the number of platter contained. The size of an HDD is represented by another attribute. Now write a method that calculates the size of an HDD as a product of the number of platters and the size of the platters. Write getter and/or setter methods for appropriate attributes. Please note the following conditions: IOPS cannot be changed again after the initialization of an HDD. In addition, IOPS are always a multiple of 10. If a transferred IOPS deviates from this specification, IOPS is set to the next higher multiple of 10. Example: If the user tries to set IOPS to 5321 bytes, IOPS is set to 5330 using this method. When setting the number of platters, the size of the HDD is recalculated. Write a method for calculating the error rate per HDD. This method is passed the number of bytes after which an error occurs on average. This method calculates the error probability per byte on average as the inverse of the transferred number of bytes on average, i.e. 1/number of bytes (1 divided by the number of bytes). Now write a constructor that accepts the number of contained platter, the hardware interface, the IOPS, and a sample platter and initializes suitable attributes of an HDD. This constructor uses the sample platter as a template for all HDD platter. For this task, you can assume that all HDD platters are initially identical.

Now write toString() methods, each of which returns the values specified below (in a single line, i.e. without a line break), using the respective values for the terms in angle brackets, for example, the specific number of sectors <number of sectors>:
• For Platter: <number of sectors>␣sectors,␣<platter size>␣bytes
• For HDD:
<HW-interface>,␣<IOPS>␣IOPS,␣<example platter>,␣<number of platters>␣platter,␣<HDD size> ␣bytes
Write another class that contains a main method. This method instantiates at least any HDD with a sample platter. Output the status of the HDD and the sample disk on the console. Use the main method here to extensively test the functionality of your program.
Attention: You do not need to convert units for the size of the respective storage medium, since all information is in bytes.

