CSE 220: Systems Programming

Programming Assignment 4: Dynamic Allocator

Introduction

In this assignment, you will implement a dynamic memory allocator suitable for replacing malloc() for heap
memory in a Unix process. You will learn about dynamic memory management, pointer manipulation, and
pointer casting.

The type of allocator you will implement is a pool allocator, using multiple memory pools. Each memory
pool consists of allocations of a fixed size. Allocations are served out of the smallest pool that supports the
user's request, and allocations too large for any memory pool are requested from the OS directly. The memory
pools in this project will contain allocations ranging from 32 bytes to 4096 bytes.

Your allocator is designed in such a way that you will be able to use it to run standard Unix binaries! Because
you will not be implementing support for concurrency, some programs may fail through no fault of your own;
however, many programs will operate correctly. You may find it interesting and enjoyable to use your allocator
implementation to learn about the memory accesses of standard applications.

This document is long, but there is a reason for that. Please read it carefully and in its entirety before
starting your assignment! There are many subtle requirements in this document that will require critical
thinking about program structure; for example, the relationship between allocation sizes and the free list table.
Plan to sit down and draw out your data structures and implementation when you begin. You will not “save
time" by skipping this step!

1 Getting Started

You should have received a GitHub Classroom invitation for this assignment. Follow it, then check out your
repository.

Chapter 9, Section 9.9 of Computer Systems: A Programmer's Perspective describes a dynamic allocator im-
plementation in some detail. You may want to read this section before starting your project, and will certainly
want to read it carefully while implementing your project.

Chapter 8, Section 8.7 of The C Programming Language also describes a dynamic allocator of similar structure
to that described in CS:APP. This allocator is described in somewhat less detail, but uses techniques (such as
declaring structures to hold metadata, rather than using macros and pointer math) that are to be preferred
over the approach in CS:APP, so you should read and try to understand it, as well. Again, you may want to read
this section before you begin, and will certainly want to read it carefully during implementation.

You will absolutely need to read man 3 malloc. It is not long. We will not answer questions that are clearly
answered in man 3 malloc.

Some parts of this handout may not make much sense until you have read the above readings.

2 Pool Allocators

Pool allocators are designed to allow applications to efficiently allocate, free, and reallocate chunks of memory
in sizes that they use frequently. This is an effective strategy for many applications because it is common for
an application to allocate many objects that are the same size — for example, nodes in a linked list or tree, or
buffers for communication. Placing such frequently-used objects in a pool where they can be rapidly reallocated
improves application performance.

Allocation pools are maintained by requesting large-ish blocks of memory from the operating system, then
breaking those blocks up into the allocation size stored in a pool. These "free” blocks are then used to serve
allocations requested by the user. When blocks are freed by the user, they are simply placed back in the pool,
preventing future allocations from having to request more memory from the operating system. When an allo-
cation is requested from a pool that does not contain any free blocks, the allocator will request another large
chunk from the operating system to be broken up again.



You will be implementing a multi-pool allocator, which will maintain pools containing allocation blocks with
sizes of powers of two between 2° (32) and 2'? (4096). These blocks will be used to serve allocations of 24 (32 —8)
to 4088 (4096 — 8) bytes, using the remaining 8 bytes between these sizes and the power of two to store
metadata. Because the free() function does not accept a size argument, this metadata will be used to store the
size of the block for use by free(). Each allocation request will be served from the smallest block that will store
the allocation; for example, a 1 byte allocation would come out of a 32 byte block, while a 1000 byte allocation
would come out of a 1024 byte block.

3 Requirements
You must implement the following functions in the file src/mn.c:

. void *malloc(size_t size)

« void *calloc(size_t nmemb, size_t size)
. void *realloc(void *ptr, size_t size)

. void free(void *ptr)

Your implementation must satisfy the standard definition of these functions (see man 3 malloc), with the ex-
ception that it need not allow for concurrent access from multiple threads, as well as the additional implementation
requirements listed here.

Your implementation nust be a multi-pool allocator as described in this document. No other type of allocator
implementation will receive credit. It must use pool allocation as described here to implement all allocations
between 1 and 4088 bytes, and a simple bulk allocator (described below) for allocations larger than 4088 bytes.
(The discrepancy between 4088 bytes and the even-power-of-two 4096 bytes, mentioned in Section 2, will be
further explained later.)

All memory returned by your allocation functions (malloc(), calloc(), and realloc()) must be 8 byte aligned.
Failure to maintain this requirement will not result in functional failures of your allocator on the x86-64 plat-
form (programs using your allocator would continue to work correctly), but may result in degraded perfor-
mance for programs using your allocator. On other platforms, failure to maintain this requirement could result
in program crashes.

Your implementation must be able to resize an allocation using realloc. Under certain circumstances it
should do this without performing any new allocation, and under other circumstances it should do this by
allocating a new block and copying the user's data from the old block to the new. If it is possible to perform the
reallocation without allocating a new block and moving data, your implementation must do so. This is always
possible for reallocations which reduce the size of an allocation, as realloc() can return the existing block, and
the user will simply use less of it. For allocations which increase the size of the allocation, it is possible only
if the block originally selected to serve the user’s allocation is also large enough to serve the new allocation.
For example, if the user calls malloc(32) to request a 32 byte allocation, your allocator will select a 64 byte block
containing 56 usable bytes of memory. If the user later wishes to realloc() this block to 48 bytes, this does not
require any allocation or copying, as while 48 bytes is more than the original 32 bytes requested, it is less than
the 56 bytes available in this block.

If realloc() cannot resize a block without performing allocation, it must use your allocator to acquire a new
block of the appropriate size (which is necessarily larger than the original block), copy the user’s data from the
old block to the new block, and then free the old block.

When changing the size of an allocation using realloc(), your implementation must attempt to resize the
allocation in place, if possible. For reallocations that reduce the size of the allocation, this should always suc-
ceed. For reallocations that increase the size of the allocation, it should succeed if there is sufficient space in the
allocated block after the allocation being resized. Only if this is not the case should a new allocation be created
and the memory of the original allocation be moved to the new location before freeing the original allocation.

Requests for an allocation of size 0 to any of the allocator functions may either use the pool allocator to
create a minimum-size allocation or return NULL, as you prefer. You will probably find that simply returning



NULL is easier, but if for some reason your algorithm benefits from the possibility of returning a minimum-size
allocation, you may do so.

Your allocator must be capable of returning freed memory to the heap and reusing it to serve future allo-
cations. In particular, if a program repeatedly allocates and frees many small objects with a constant upper
bound on the number of objects and total space required, your allocator should eventually settle on a heap size
that requires no additional requests to the operating system for more memory.

You must test your own project. The tests provided in Autograder will be incomplete, and you should not
rely upon them to give more than a rough estimate of your final score. There is no requirement to submit your
tests for this project.

3.1 Metadata and Global Symbols

As described in CS:APP in Section 9.9, a heap allocator must not use any global state of non-constant size that
cannot be allocated from the heap itself. Therefore, you should declare only primitive global (or static) variables
for your allocator, and you must use the heap for any other data required. A clever implementation will add a
few constant bytes to each allocation and store the rest of its variably-sized metadata in free blocks, requiring
only a constant allocation at initialization time for its remaining storage.

3.1.1 Static Variables

Any global variables or functions declared by your implementation in mm.c should include the keyword static.
This will ensure that they are not visible to any other translation units, and that your allocator's function cannot
be disrupted by code that may link to it. (See Section 4.6 of K&R for more discussion of static variables, and the
compiler.pdf slide deck for a definition of translation units.)

3.1.2 Block Headers

The metadata stored for each block of memory managed by your allocator (allocated or free) should be a 64 bit
header word preceding the allocation (or free block), containing the size of the allocation and some flag bits.
Note that the minimum possible block size for the pool-allocated blocks is 25, or 32 bytes, and that all pool-
allocated blocks have sizes which are powers of two. Recalling the format of integers in memory, this means
that the lowest five bits of the integer size of a block, whether it is free or allocated, will always be zero. Those
bits can therefore be used to store flags, and then masked out when retrieving the size of a block. CS:APP
explains this in some detail in Section 9.9.6 (In particular, see Figure 9.35).

You should use the lowest-order bit (the “ones bit") to indicate whether a block is free or allocated; a one
bit will indicate an allocated block, and a zero bit will indicate a free block. While this is not entirely necessary
to complete this project, it makes the implementation of a heap validator (suggested in Section 5) much more
effective. Remember to account for this when allocating and freeing bulk-allocated blocks, if necessary. You
will probably find that bitwise operations are the best way to maintain the allocated bit and other bits in the size
field, rather than using + 1 and - 1 (which has for some reason proven both a popular technique and a popular
source of bugs in the past).

The pointer returned by the allocation functions, and the pointer given to free() or realloc(), is the first
byte of memory after the header word. Your implementation will have to use pointer math to find the header
word for a block that is passed to free() or realloc(), and perhaps to calculate the address to be returned from
malloc() et al.

This metadata is the reason that your allocator’s effective allocation sizes are 8 bytes smaller than an even
power of two. The block from which an allocation is drawn is a power of two in size, but there are 8 bytes of
header used from that block for storing metadata.

3.2 The sbrk System Call

The operating system provides two system calls to manipulate the program break between the application's
heap and the unmapped memory region above the heap: brk() and sbrk(). The brk() system call accepts an
absolute address and immediately sets the program break to that point, while sbrk() accpets a relative size and



adjusts the current program break by that amount. It is difficult to use brk() correctly and safely, so we will use
sbrk() for this assignment.

Passing a positive value to sbrk() causes the system to move the program break the requested number
of bytes upward in memory, toward larger addresses. It will then return the old value of the program break,
which is a memory address. The newly allocated memory therefore begins at the address returnd by sbrk()
and continues for the number of bytes requested by the application.

3.3 The Multi-Pool Allocator

Your allocator must use the following pool allocation policy for allocations between 1 and 4088 bytes. All allo-
cations from the pool allocator portion of the heap will be in blocks of size 2¥,5 <y < 12.

All allocations of size 4088 bytes or smaller will be rounded up to the next larger integer size x satisfying
the equation x = 2Y — 8, for some y between 5 and 12 (inclusive); that is, 24, 56,120, . .., 4088. These allocations
will be served out of blocks of memory 8 bytes larger than x, to allow space for your allocator to store metadata
about the allocation. This means that the smallest unit of memory your pool allocator will manage is 32 bytes
(including metadata), and the largest unit of memory your pool allocator will manage is 4096 bytes (including
metadata).

The provided function block_index() will return y (which you may find more convenient than x itself for some
operations), given x. In other words, it will return the log base 2 of the block size required to serve the requested
allocation. You can use this as an index into a table of pools containing free blocks of specific sizes, as discussed
in Section 3.5.

Your allocator will maintain a separate free list for each of the block sizes described above. Every block on
the free list for a given size will be of that size, and available for allocation. When your allocator attempts to
allocate a block of a given size and there are no blocks on the relevant free list, it will request 4096 bytes of
memory from the OS using the sbrk() system call, break the returned allocation up into blocks of the desired
size, and place them on the appropriate free list. By calling sbrk() relatively infrequently and serving allocations
out of fixed-size blocks in this fashion, you improve the run-time performance of your allocator at the expense
of some memory overhead.

Each allocation in your multi-pool allocator should first attempt to find an existing free allocation block of
the desired size. If such a block exists, your allocator should use it. If it does not, your allocator should request
4096 bytes of memory from the OS as described above, then retry the allocation.

3.4 The Bulk Allocator

For all allocations of larger than 4088 bytes, a bulk allocator must be used that maps a single object into the
process’'s memory space directly, and unmaps it on free. The following provided methods should be used to
accomplish this; you will reserve 8 bytes of extra memory for bookkeeping when calling these functions; i.e.,
if your allocator is serving a request for 4096 bytes of memory, you will request 4104 bytes from the bulk
allocator. These extra 8 bytes will be used to provide a header for bulk allocated objects in the same fashion as
pool allocated objects, so that they can be freed easily.

« void *bulk_alloc(size_t size)

« void bulk_free(void *ptr, size_t size)

The bulk_alloc() function returns a pointer to a contiguous block of memory of at least size bytes, similar to
malloc(). However, unlike malloc(), this allocation cannot be freed with free(). Instead, bulk_free() will free this
block when provided with both its address and its size in bytes. You may view the implementations of these func-
tions in the provided file src/bulk.c, although you should not modify them and you do not need to understand
them. They use the system calls mmap() and munmap() to request specific modifications to the process's memory
map.

Note that you must provide the size of the allocation being freed to the bulk allocator. It cannot determine this
itself! This is the purpose of the extra 8 bytes of overhead requested by your allocator.
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Figure 1: A free list table containing six free blocks of memory. Each block is labeled with its size and free flag.

3.5 Free List Table

You must store the free blocks in your allocator in a set of explicit free lists (as opposed to the implicit free
list described in CS:APP). For an explicit free list, the allocation space inside a free block (which is otherwise
unused) is used to store pointers to the next and previous free blocks on the list. You can define a structure,
similar to the ListNode structure you used for PA2, that includes the free block header, a next pointer, and a
previous pointer, and then use pointer type casting to map it to the address of a free block on the heap. You
may find that your PA2 code can be used almost directly for this project!

Note that this project requires only that you are able to insert and remove from the head of a list. You should
never walk a list. It is important that malloc() and free() are constant-time operations, and for this reason, their
run time should not depend on the length of free lists. You can likely therefore use singly-linked lists for this
project. All of the allocation sizes are large enough for doubly-linked lists if you wish to use your PA2 code,
however.

As explained in CS:APP, Section 9.9, this sort of free list requires no extra space. The pointers that make
up the free list use the space inside the free blocks that would otherwise be used by the application when the
blocks are allocated. Make sure that you understand this subtle point. It is critical that you do NOT manipulate
these pointers on an allocated block!

By creating a table of these lists indexed by the log base 2 of the size of objects at each entry, you can use
block_index() to very quickly determine whether a free block of a given size is available. The block sizes for
this project were carefully chosen to be precise powers of two for this very reason. Figure 1 shows an example
depiction of such a table.

You must allocate the free list table itself on the heap. To avoid malloc() depending on malloc(), you may wish
to allocate it directly using sbrk(); because it will never be freed, this is not a problem, and it does not require a
header or any other allocation structure.

4 Guidelines

There are many aspects of this project that you may choose to implement in a variety of ways. You have exam-
ples of some portions of the project in the form of Section 9.9 of CS:APP and Section 8.7 of K&R. This section
contains some guidelines on how you might tackle those aspects, as well as general advice to help you succeed
in this project.



4.1 Structures and Types

Computer Systems: A Programmer’s Perspective presents an allocator implementation that uses preprocessor
macros and raw pointer accesses to extract essentially all of the information from allocation blocks. I do not
recommend this approach. The approach in The C Programming Language is more appropriate, although it uses
a union in a way that I do not think is necessary (for portability reasons that we are not currently concerned
with), and stores its fields in a different order than is required in this project.

Consider declaring a structure that encompasses the header word, previous, and next pointers for the free
list, and using that structure to access the free list. You can probably use some of your PA2 implementation's
code for this purpose.

The reason for this recommendation is multi-fold, but the two most important considerations are:

« The use of macros to implement program functionality can make debugging very difficult.

« Limiting usage of void pointers and pointer casting as much as possible will help the compiler flag errors,
by allowing type errors to indicate logic errors.

4.2 Macros and Functions

The previous notwithstanding, you will probably still need or want some macros or functions to perform type
casting and certain pointer manipulations reliably and consistently. You absolutely should not have random
additions and subtractions of fixed values or sizeof() calculations sprinkled all throughout your code! This
makes it very easy to miss a location where you should have made such a calculation, and did not; a macro or
function to perform this cast and change is a better solution. In general, prefer functions over macros (because
of type checking), but in some places macros may be appropriate.

4.3 Task Decomposition

You may find that it improves the clarity and flow of your code by breaking the various tasks down into smaller
functions that may even be used by more than one portion of your implementation. You should absolutely do
so! Declare static functions in mm.c to encapsulate such functionality.

In particular, the logic for requesting more heap space using sbrk() when necessary and breaking up free
blocks to serve smaller allocations will likely be shared between several functions.

Remember also that some operations can be delegated to other required functions — in particular, malloc().

4.4 Pointer Math

You will do a lot of pointer math in this project! You may find it easiest to do this math by first casting the
pointer to void * then manipulating it using simple arithmetic and sizeof(). Remember that while arithmetic
on void * behaves "normally”, arithmetic on other types operates in increments of the size of the type. This
means, for example, that (void *)8 + 1is 1, while (int *)@ + 1is 4. Therefore, you may find it less confusing to
simply cast any value to void * before manipulation.

5 Testing

You should plan to write a heap validator for your project. This is a function that you can call while debugging to
crawl through your heap structure and verify its correctness. You should be able to use your list_validate()
from PA2 as part of this process, but will also want to check other things that are allocator-specific. You may
wish to use debug macros such as discussed in class when talking about the C preprocessor to include extra
information for validation, routinely validate the heap, etc., when a debug symbol is defined. Like drawing
your data structures, you will absolutely not save time by skipping this step. You should consider developing
it along side, or even before, your allocator implementation!

Your project will be built into a shared object (library) when you run make in the top-level source directory.
You can use this library to run standard Unix system utilities using your allocator, or you can link nm.o and



bulk.o against tests that you write. The project Makefile is extensively commented and provides information
about how to do both of these things.

Liberally sprinkling your project with debugging statements and correctness assertions that can be turned
on and off with the preprocessor will make your job easier. When printing debugging statements, you will
want touse fprintf(stderr, ...) for avariety of reasons; in addition to the previously-mentioned benefits of this
approach (such as unbuffered output), this is guaranteed not to allocate memory. When debugging an allocator,
that is an important property!

The debugger will be indispensable for this project. Plan to use it often to examine pointer values. Re-
member that the gdb print command will print the value of any expression, including pointer arithmetic and
casting.

Some example simple programs to test your library against include 1s, w, echo, and ps. These and many
other Unix commands should run under your allocator once it is complete. You can look at their man pages
for more information, and TAs may be able to help you find other commands to test. If your allocator becomes
sufficiently robust, large applications such as Emacs will even run! Note that, because your allocator need not
support multiple threads (we haven't yet talked about how to do this), some applications will not run and it is
not your fault. If simple command-line applications fail to run, you should suspect your allocator. If large GUI
applications fail to run, it is probably that they are trying to use threads. (Emacs 25, which is installed on the
course VM, happens to be single-threaded, so it is an exception to this rule.)

TAs and instructors will expect you to have implemented a heap validator and know how to use it on this
project. Bugs that appear to be easily identified by a working validator will meet a response of “what does your
validator say?” If you need help strengthening your validator, ask!

6 Submission

Usemake submissiontobuild a submission tarball, malloc.tar, that you will upload to Autograder. The Autograder
tests for this project will be incomplete, but give an indication of the correctness of your project.

This is a three week project. It is a three week project because it will take more time and care to implement
than previous projects! Implementing an allocator is a tricky and subtle problem, and you can lose a lot of time
to debugging. Plan to start early and work consistently; you will have much more success with this approach
than you will with sitting down for a few marathon coding sessions late in the assignment.

7 Grading

The handout quiz for this project will be worth 0.5% of your final course grade, and the rubric below will be
worth 9.5% of your final course grade, for a total of 10% of your grade. The handout quiz score will not be
reflected on Autograder for this project.

Your project will be evaluated as follows:

Description Points
Handout quiz

All allocations are 8 byte aligned

All heap data structures are allocated on the heap
sbrk() is called for CHUNK_SIZE only

Pool allocations are for powers of 2

Bulk allocations are used for large allocations
malloc(), calloc(), and realloc() use pool allocation
calloc() properly clears memory

realloc() can extend (and reduce) allocations
realloc() copies memory when necessary

free() returns memory to the heap

Functions sufficiently to run simple applications
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