Part 1: 

The aim of this lab is to check the validity of the Blockchain. Follow the steps mentioned below:

1- Check Hash Values of all linked blocks, and make sure every block is linked with next.
2- Calculate Hash independently and compare it with stored hash to ensure there is no
tampering in the data.
Tips:

1. Create class Block and class Blockchain, as mentioned in Lab1.

2. Create class ChainValidation. In this class, create two functions: head_check() and
integrity_check(). 

The head_check() function should see and compare the
hashes of each block and see if the previous hash value mentioned in this block header
matches with the actual hash value of the previous block.

If the hashes are not matching,print the message that Blockchain not linked properly, else print that Blocks are linkedproperly. 

The integrity_check()function calculate hash independently and compare
it with stored hash to ensure that there is not tampering in the data
Expected Output:
[image: ]

Part 2:
Using the Code from part 1.
The aim of this lab is to implement Proof-of-Work (PoW) consensus algorithm of the Blockchain.
Follow the steps mentioned below:

1. Refer to Lab # 1, step 3, there you provided different parameters values in Blockchain
class, such as difficulty in mining, maxNonce, and target value.

2. Using the above values, incorporate a function mine() in Blockchain class which will
implement the logic of Proof-of-Work (PoW) consensus algorithm. 

For illustration purpose, see the output below, where when we increase the difficulty, the number of
hashes required to mine the block increases. 

In the mine() function, you just need to implement this logic: If the value of Hash is less than target, the block is not mined, else increment the nonce and the block is mined successfully. Then print the number of hashes required to mine the block.

Expected Output:
[bookmark: _GoBack][image: ]
image1.png

image2.png

