
CSCI 141 Computational Problem Solving 
Project 3 

Due Sunday, 12 April 2020 at 2359 

In project 2, you drew rectangles, squares, triangles, and hexagons using characters 
in the terminal. Next, we explore how to draw shapes graphically in your favorite 
windowing system. To do this, we will employ the object-oriented principles discussed 
in lecture including classes, methods, attributes, inheritance, and polymorphism. 

Your program should display a 500x500 window on the screen at launch. When the 
user clicks anywhere in the window, a random shape should appear at that location. 
A naïve implementation would attempt to contain everything in paintEvent, but this 
approach quickly becomes unmanageable because of the information needed to draw 
each shape. A well-structured program will consider individual objects and how they 
interact. This is the fundamental principle of object-oriented design. What we outline 
below is a suggested implementation approach. 

To begin, define a base class Shape that stores the shape's length, position, and 
(randomly generated) color. From there, you can inherit these basic properties and 
further specify additional shapes. At a minimum, your program must support 
squares, rectangles, triangles, circles, and ellipses. Each shape should define its own 
class in an inheritance hierarchy based on Shape. Recall that inheritance often spans 
more than one level, so consider and implement an appropriate inheritance scheme. 
The classes that define the various shapes should further specify the Shape class by 
adding additional needed attributes, appropriately invoking parent constructors 
during initialization, and including a method to draw the shape using a QPainter 
instance provided as a parameter. Notice that the shape classes fully encapsulate the 
shape concepts, including the graphical drawing code. By providing an already-in-
use QPainter instance to the shapes' draw methods, all of the shape classes should 
be implemented in a single file called Shapes.py. 

Rather than combine the shape implementations with the graphical event-handling 
code, we can further compartmentalize our solution by using two files. The advantage 
to this is that the Shapes.py file contains only the code pertinent to creating, 
maintaining, and drawing the shapes. Everything event-related, such as mouse 
clicks, belongs in the ShapeDrawer.py control file. We have provided a skeleton file as 
a starting point for ShapeDrawer.py. 

Suggested Approach 

When the user clicks somewhere in the window (indicated by a call to 
mousePressEvent), create a new Shape object at random to be located at the click 
coordinates and add that Shape to the list of items to draw, which should be an 
attribute of your class. The Shape object's constructor (in cooperation with its parent 
constructors) should set all its attributes, including coordinates, color, and size. Feel 
free to apply reasonable restrictions to shape sizes. Every time the window is drawn 



(because something triggered a call to paintEvent), each of the shapes created so 
far should be drawn. Because they are in a list (see below), you can iterate over them 
using a loop and draw each shape. The beauty of polymorphism is that you can treat 
them all as basic Shapes and ask them to draw themselves, because they each 
implement a draw method that takes a QPainter instance (perhaps the one from 
paintEvent in ShapeDrawer.py) as a parameter. Note that you must already have 
activated the painter object by calling its begin method before passing it to a shape's 
draw method. 

The list Data Type 

We have seen that for loops iterate over sequential items like strings of characters 
or elements of a range. Python's list type, which stores a sequence of any objects, 
generalizes our ability to iterate. A list object can store a collection of items, and a 
for loop will visit each item in the list. To create a new list, we can (among other 
ways) use the list constructor, such as my_list = list(). To insert items into the list, 
we can use the append method, such as my_list.append(shiny_object). Finally, to 
iterate over the items in the list, 

for item in my_list: 
 #do something with item 

Functional Expectations and Point Values 

• 2 points: When the user clicks anywhere in the window, a shape 
appears somewhere in the window. 

• 1 point: The upper left corner of shape that appears (or its smallest 
enclosing rectangle) is located at the click coordinates, or 
1.5 points: The center of the shape that appears is located at the click 
coordinates. 

• 1 point: The shape that appears is randomly selected among Rectangle, 
Square, Triangle, Ellipse, and Circle. 

• 1 point: Shapes are of random size and orientation, or 
1.5 points: Shapes are of random size and orientation, but stay within 
the 500x500 window. Feel free to restrict the maximum size of shapes 
as you deep appropriate. 

• 2 points: The shapes are defined in individual classes that are fully self-
contained (including graphical code). Only the code relevant to each 
shape is present in the shape classes. Shape classes are imported in 
ShapeDrawer.py to facilitate drawing. Polymorphism is employed so that 
the paintEvent never cares what shape it is drawing. 

• 2 points: Quality of your writeup, including its explanation of how 
classes and inheritance factor into your implementation, references to 



items you consulted, and a detailed explanation of exactly what happens 
when a user clicks in the window. 

• 1 point: Dazzle us with something else that you can do with your 
program that personalizes it without changing the basic functionality 
described above. Some examples might include shapes taking random 
walks after they appear, shapes falling downward or floating upward 
slowly after they appear, shapes disappearing after some time on the 
screen, more complex and difficult shapes, or events occurring when 
shapes touch. Your extensions should illustrate your creativity and 
understanding of object-oriented programming. Some video game 
aficionados may notice that the classic Atari® game Asteroids is not too 
far away from this project. Though fully reaching that goal is still a bit 
difficult, you are closer than you might realize. 

SUBMISSION EXPECTATIONS 

writeup.pdf: A document that outlines how your program works, including a 
walkthrough of exactly what happens when the user clicks in your window. Your 
writeup must also explain what you implemented for the project's dazzle point and 
why it is worth of 10% of the project's value. Also include references to any sources 
you consulted, regardless of format. 

ShapeDrawer.py: Your main program. We will launch this program and expect a 
window to appear in which we can click to create shapes. The window should be 
500x500. We provide a skeleton for the file. 

Shapes.py: Your shape implementations including their corresponding drawing 
methods according to a well-reasoned inheritance hierarchy. 


