
MAE 107
Take-Home Final

Due date/time: Friday, 13 Dec., 2019; 7pm

Note: You must show all your work in order to get credit.

Notes:

• Remember: You must hand in your matlab codes along with the math-
ematics (if needed), discussion and results. Also, as indicated in class,
these codes must be commented in accordance with the examples
appearing on the website.

1. (10 points) Consider solving the initial value problem given by

ẏ = f(t, y)
.
= 1

2
sin(t) + cos(y + t)[arctan(y)− 1

2
cos(y)]

over t ∈ [0, 5] with initial condition y(0) = 1. You will solve this
by two second-order Runge-Kutta methods. The first method is a
second-order Runge-Kutta with the parameter from class being γ = 0.5
(equivalently, c2 = 0.5 in the textbook, page 361). The second method
is a second-order Runge-Kutta with the parameter from class being
γ = 100 (equivalently, c2 = 100 in the textbook, page 361). Apply
both methods with n = 10, 102, 103 and 104 steps. For each method,
plot all the approximate solutions (for various n) on a single graph (for
two plot windows in total – one per method). Treating the solution
with γ = 0.5, n = 105 as the true solution, plot the log10 of the errors
(i.e., |yn− ȳ(tn)|) versus the log10(n) for each method, all on one graph,
but in different colors. Using matlab, indicate which color corresponds
to which method on your graph. Comment on the slopes.

2. (5 points) Do the same thing as in the previous problem, but now
include the fourth-order Runge-Kutta method (that you have written
yourself) as well. In this problem, treat the fourth-order Runge-Kutta
solution with n = 105 as the true solution. Also, in addition to plotting
the log10 of the errors (i.e., |yn−ȳ(tn)|) versus the log10(n), plot the log10

of the errors versus the log10 of the number of function evaluations (i.e.,

1

the number of times that you evaluated f(t, y)) for each method. Has
this changed the slopes compared with the plot where the horizontal
axis was the number of steps (log10(n))?

3. (3 points) Do the same thing as in the previous problem, but now
include Euler’s method. From the log-log plot, estimate the error in
Euler’s method with n = 1000 steps.

4. (12 points) Now modify the initial value problem to

ẏ = f(t, y)+σḂ
.
= 1

2
sin(t)+cos(y+ t)[arctan(y)− 1

2
cos(y)]+σḂ, (1)

where σ = 0.1 and B(t) denotes a Brownian motion (and the deriva-
tive notation is only formal, but fine for our needs). Approximate the
solution of this IVP by combining the Euler method with an addition
of Gaussian noise (a normal random variable) at each step. That is,
modify your Euler one-step update to be

yk+1 = yk + hf(tk, yk) + σ
√
h νk,

where νk has mean zero and variance one, and where the νk are all
independent from each other. (You may use the matlab command
“nu=randn;” to create each of these νk values.) Let the number of
steps in each simulation be n = 1000. Save the terminal values, yn, for
each run, and run this code NR times. Note that you have generated
NR values of yn. Make a histogram with 20 bars, of these values. Do
this two times, each time with NR = 1000, creating two histograms.
Are these identical? If not, roughly explain why. Now, do this one more
time, but with NR = 4000. By examining the data from the output of
your code in the case NR = 4000, roughly estimate the probability that
the solution of (1) will be within ±0.2 of the nominal solution (i.e., the
one with no noise). How about within ±0.4?

5. (10 points) Adapt (if necessary) your fourth-order Runge-Kutta code
to handle systems of ODEs. Apply your code to the ODE system given
by (

ẏ1
ẏ2

)
= F (y1, y2)

.
=

(
y2

−1√
y21+0.1

+ −µ√
(y1−4)2+0.1

)
, (2)

with initial condition, y1(0) = 2, y2(0) = 1. Solve the system over
t ∈ [0, 6]. The coefficient, µ, is a parameter. Use µ = 4. Considering

2

only values for the number of steps of the form n = 2k, find the smallest
value of n such that the error in the terminal value is less than 10−8.
(Here, by error with n steps, we mean the euclidean norm of the vector
error, i.e., en

.
=
√

(yn1 − ȳ1(6))2 + (yn2 − ȳ2(6))2, where (ȳ1(6), ȳ2(6)) is
the true solution at t = 6. As usual, given that we do not know the
true solution, you may substitute the next size of n, n̂ = 2k+1, in place
of the true value.)

6. (10 points) Consider the previous problem. Suppose you can vary µ,
and that you would like to find the value of µ such that ȳ1(6) = −5.
Apply a secant method, starting from µ0 = 4 and µ1 = 3 to search for
this value of µ. You may exit the secant method when |y1(6)− (−5)| <
10−6. Note that the secant method will call your Runge-Kutta code to
evaluate the function. You should use the value of n that you obtained
in the previous problem as the number of steps in the Runge-Kutta
code.

3

