

P2 – Process Scheduling Project

Overview
In this project, you will be changing the process scheduler in Bionic Beaver. The new scheduler will implement

four Major Levels of queuing for processes. These queues will correspond to the four levels in the tags that you

associated with processes in Project 1. Each Major Level L will be allocated some amount of time to run on the

CPU. The scheduler will use a Round Robin-like scheduling algorithm to allocate time to each Major Level.

When CPU is assigned to a Major Level L, only processes of that Major Level (processes with the tag level L)

can compete for CPU time (and only if they are ready). If there are no processes in a Major Level, then the

system will run an idle process to use up the time allocated to that major level.

The sum of the allocation times for the four levels determines the round robin cycle time for the user processes,

and the time given to a level divided by this total cycle time gives the fraction of CPU time that each level gets.

RRTime = Σ(Allocation Time)

CPUTime = (Level Time)i / RRTime

You will introduce system calls and library wrapper functions to obtain the amount of time allocated to a Major

Level (any user can call), and to change the amount of time allocated to a Major Level (restricted to root). These

you will document with manual pages. You will then create a short video to demonstrate your code and submit

the project via Canvas.

NOTE: Take Snapshots in VirtualBox! You will most likely brick your machine at some point during this

or other projects, and you will not want to start from scratch. No, seriously – take snapshots!

COP4600

Major Level Process

L
Scheduler

CPU

Background
In systems that enforce Mandatory Access Control (MAC), access control decisions are not only based on what

the owner of a file (or other object) decides but are also based on labels attached to processes and other objects.

These labels can only be changed in limited ways by a regular user, and the system typically enforces a policy

that limits information to flow in one direction (from less sensitive to more sensitive, but not the other way).

Structure
The project is broken into five main parts:

1) Change the CPU scheduler to enforce strict allocations per Major Level. The entire time allocated to a

Major Level must be consumed by processes at that level or by an idle process.

2) Create system calls that allow a process to “get” or “set” an allocation for a Major Level.

3) Create system library wrapper functions that allow the system calls to be invoked from a C program.

4) Add manual page entries for the system calls and the C library calls.

5) Create a report and a short screencast to explain what you did.

While exact implementation may vary, the library functions must match the signatures laid out in this

document, the system calls must get and set allocation levels properly, and the CPU scheduler must enforce the

strict Major Level allocations correctly.

Process Scheduling

Each process in the modified system will have a 32-bit tag from Project 1. Recall that a tag has a structure of

two bits of level (the two LSBs, bits 0 and 1) and 29 bits of bitmap (bits 2 through 30). The MSB (bit 31) shall

be set to 0 always. Level values range from zero (low) to three (high). Treated as an unsigned integer, tags can

take values between 0 and 231-1. Tags for this system behave as specified in Project 1.

The Process Scheduler currently has some means of prioritizing processes and schedules them according to

this policy. You may find some of these provided to you below.

You will replicate this mechanism to work for four major levels of processes, corresponding to the four

levels a process tag may hold (The Major Level L). Each level L will have an allocation in milliseconds, with

an initial allocation of 10ms for each level (always initial value on booting up). You will add another layer

onto process scheduling “above” the methods currently used by Bionic Beaver so that:

• Each level is allocated the CPU time with the corresponding allocation time for that level.

• Only processes whose tag holds a level = to the level that currently has the CPU can compete for the

CPU -- and only if that level holds the CPU.

Processes within a level are scheduled as before and may be given a quantum of time on the CPU. If the

process uses all its quantum, then it may be preempted by another process at the same level. If a process

blocks for whatever reason, then only another process at the current level (the level that has the CPU) may

replace it. When it unblocks, it can only rejoin the processes at its level to compete with them for the CPU

when that level has the CPU. If there are no processes at the current level, then no processes from another

level can be run until the time allocated to the current level is exhausted.

When the allocation for a level has been exhausted, the current process (if any) is preempted and the CPU is

given to the next level. If a process at the current level was preempted due to the level allocation time ending

before its quantum within the level was exhausted, the system remembers the amount of time the preempted

process has left of its quantum within its level. When its level obtains the CPU again, and that process is

scheduled (not necessarily first among its competitors at the same major level), it will resume with the amount

of time it had left from when it was preempted.

System Call

Each of the four levels in the modified system will have an allocation in milliseconds, which determines the

amount of time a level has the CPU when the scheduler runs that level. This allocation can only be changed

by a process with root access, but the allocation for any level may be read by any process.

The sum of the allocations determines the cycle time for all the levels to obtain the CPU and cannot be less

than 5ms. However, the allocation for a given level may be less than 5ms., including 0ms. (i.e., processes at

that level get no CPU time).

You will create kernel system calls named get_level_alloc and set_level_alloc. These will allow the

allocation for a given level to be obtained or modified, respectively. Other aspects of their signatures may

vary. The system calls are invoked from user space via syscall(call_number, param1, param2). Your

system call must be limited to no more than two parameters!

All of your code modifications must include appropriate comments wherever changes are made including

your name and the date. Your code as always should adhere to good practices, including no manifest

constants, good identifier naming, and modularity.

Static Library

As in Project 1, you will create a static library that provides an API to invoke the system calls in a directory

named tags. This will be composed of headers files with name tags.h and harness.h and a static library

file named libtags.a. You will also need to provide a Makefile for this library in the tags directory. All

other sources must be contained within the tags directory. Please note, the names of these files must match

exactly!

You will create a tarred gzip file of the tags directory with name tags.tar.gz. When testing your code, we

will decompress the archive, enter the tags directory, and build the library. All functions enumerated below

must be made available by including "tags.h" or "harness.h". See Submission for details.

In addition to the standard library functions, you will implement testing harness functions. The testing harness

functions are used to verify the system calls from the system library (and are required for full credit on this

assignment). We will call these functions to retrieve the information needed to make a system call. We will

then call the system call within our own program. This ensures that the implementation is not being done in

the user-level library.

Library Functions

These functions provide primary functionality to user programs. They should be made available by

including <tags.h>. For both functions, level must be between 0 and 3. Allocation must be non-negative

and must not cause the cycle time to be under 5 ms.

int set_alloc(int level, int new_allocation)

invokes system call which attempts to change the allocation of the level identified by level to the new

allocation value new_allocation in milliseconds. Returns new_allocation on success, and -1

otherwise, with errno set to an unused value you will document to explain the failure. More information

about errno is provided at the end.

int get_alloc(int level)

invokes system call which reads the allocation of the level identified by level. Returns the allocation in

milliseconds for that level on success, and -1 otherwise, with errno set to an unused value you will

document to explain the failure.

Harness Functions

These functions serve as a testing harness to verify the system calls and are required for full credit on this

assignment. They shall be made available by including <harness.h>.

System call parameter retrieval data shall be returned as a pointer to an int array of 2-4 values that can be

used to make the system call. The array has this format:

 { call_number, num_parameters [, parameter1] [, parameter2] }

e.g.: { 42, 2, 867, 5309 } → syscall(42, 867, 5309)

int* retrieve_set_alloc_params(int level, int new_alloc)

Returns an int array of 2-4 values that can be used to make the set_level_alloc system call.

int* retrieve_get_alloc_params(int level)

Returns an int array of 2-4 values that can be used to make the get_level_alloc system call.

int interpret_set_alloc_result(int ret_value)

After making the system call, we will pass the syscall return value to this function call. It should return

set_alloc’s interpretation of the system call completing with return value ret_value (i.e., the return

value of this function is what the library call should return to the user program when the system call returns

a value of ret_value).

int interpret_get_alloc_result(int ret_value)

After making the system call, we will pass the syscall return value to this function call. It should return

get_alloc’s interpretation of the system call completing with return value ret_value (i.e., the return

value of this function is what the library call should return to the user program when the system call returns

a value of ret_value).

Manual Pages

You are required to create manual pages detailing the two system calls and the two wrapper library functions,

but not the four harness function calls. These manual pages shall be in man page format and in the appropriate

manual section; you may copy and modify an existing man page for this purpose.

You should “double up” on the man pages by creating a single man page that handles two or more related

calls (i.e., the two kernel system calls and the two library calls for both get_alloc and set_alloc) as

before. This can be accomplished by including all calls in the page, saving with the name of one of the calls,

then making a hard link for the other call’s man page (e.g., if you created get_alloc.3, then ln get_alloc.3

set_alloc.3 will allow that file to be accessed as either get_alloc.3 or set_alloc.3 – see for example fopen(3)).

This way, you can create two manual pages instead of four. This also makes maintenance much easier.

You should place these man pages in your tags directory. Running make from your tags directory should

place each new man page in the proper location so that entering the command man <S> set_alloc or man
<S> get_alloc will return the man page for these calls in section <S>. You may check the manual path

using the manpath(1) command to see where the man pages are, and type "man man" to see how the

sections are arranged. At a minimum, the man page must have proper header/footer, name, synopsis,

description, errors, notes, see also, and author.

Testing
You should test your code for all behavioral cases. You will include this information in your report and

demonstrate the tests in your screencast video. We will provide some limited test functions, but you must devise

additional tests to completely test your implementation. You must also test that all your man pages display

properly.

Submissions
You will submit the following at the end of this project:

⚫ Report (p2.txt) in man page format on Canvas, including a link to an unlisted screencast video

⚫ Kernel Patch File (p2.diff) on Canvas that includes sourcecode, makefile(s), and man pages

⚫ Compressed tar archive (tags.tar.gz) for the new tags library on Canvas

Report

Your report will explain how you implemented the new system calls and how you changed the process

scheduler, including what changes were made to which files and why each change was made. It will include a

description of how testing was performed along with any known bugs. The report must be created using man

format and be named p2.txt. The report should be no more than two pages and should cover all relevant

aspects of the project. It must also include a link to an unlisted screencast video. The report must be organized

and formatted professionally – this is not a memo!

Screencast

In addition to the written text report, you must submit a screencast (with audio) walking through the changes

you make to the operating system to enable the system calls. Additionally, the screencast should include you

showing/demonstrating your changes in action using your tests. (It should take no more than 5 minutes;

excess time will result in demerits and will not be reviewed). Needless to say, you must verify that the

screencast has intelligible audio and that the video is of sufficient quality to read anything captured on the

display.

Patch File

The patch file will include all changes to all files in a single patch. Applying the patches and remaking the

necessary parts of the OS, then rebooting and then building the test code (which we will also copy over)

should compile the test program and link in the new library object code. Typing "man <S> set_alloc" shall

display the man page for set_alloc in section <S>, and typing "man <S> get_alloc" shall display the man page

for get_alloc in section <S>.

Grading
We will test your project by applying the patch by switching to /usr/rep/src/kernel and running:

$ git apply p2.diff
$ make && sudo make install && sudo make modules_install

We urge you to make sure that these commands work on a clean install before submitting.

Compressed Archive (securitylevel.tar.gz)

Your compressed tar file should have the following directory/file structure:

tags.tar.gz
 tags.tar

 tags (directory)
 tags.h
 harness.h
 Makefile

 (Other source files)

 (Man pages)

To build the library, we will execute these commands (from a non-kernel source directory)::

$ tar zxvf tags.tar.gz
$ cd tags
$ make
$ cd ..

To link against the library from the parent directory, we will execute this command:

$ cc -o program_name sourcefile.c -L./tags -ltags

Please test your library build and linking before submission! If your library does not compile it will result in

zero credit (0, none, goose-egg) for the library portion of the project.

See the assignment rubric for details on grading.

Grading Rubric

Criterion Points

Report Covers all files changed 2

 Explains how and why files changed 3

 Testing, bugs 2

 Clarity, completeness, formatting 3

Screencast Walkthrough of all changes 2

 Addresses information flow through calls 2

 Demonstration of new functionality/tests performed 6

 Length is within limits (< 5 min); intelligible audio and video - deductions 0

Code Code is properly commented and understandable 1

 Code follows best practices (no manifest constants, good naming, etc.) 1

Functionality Library tests 14

 Harness test 14

Extra credit Early submission (1 week) – 5 pts 0

Expected Qualities On time, patch file works, makes, compiles, links, runs – deductions if not 0

Total Base project up to 50 pts, with max bonus, up to 55 50

Helpful References

https://www.informit.com/articles/article.aspx?p=414983

http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html

http://manpages.ubuntu.com/manpages/bionic/man3/errno.3.html

http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
http://manpages.ubuntu.com/manpages/bionic/man3/errno.3.html

