

 COP4600

P1 - System Call Project

Overview
You will implement a system call in your OS along with two library functions in the system library API that

allow the system call to be invoked from a C program. We will provide a program that exercises and

demonstrates the new call. You will then create a short video to demonstrate your code and submit the project

via Canvas.

NOTE: Take Snapshots in VirtualBox! You will most likely brick your machine at some point during this

or other projects, and you will not want to start from scratch. No, seriously – take snapshots!

Structure
The project is broken into four main parts:

1) Create system calls that allow a process to “get” or “set” a tag for a process.

2) Create system library wrapper functions that allow the system calls to be invoked from a C program.

3) Add manual page entries for the system calls and the C library calls.

4) Create a report and a short screencast to explain what you did.

While exact implementation may vary the system library functions must match the signatures laid out in this

document, and the system calls must get and set tags properly.

System Call

Each process in the modified system will have a 32-bit tag. A tag has a structure of two bits of level (the two

LSBs) and 29 bits of bitmap (bits 2 through 30). The MSB shall be set to 0 always. Level ranges from zero

(low) to three (high). Treated as an unsigned integer, tags can take values between 0 and 231-1. Tags for this

system will behave as follows:

1) All child processes shall inherit the tag of their parent process.

2) A process running as the superuser may read and write the tag of any process.

3) A user process has read-only access to the tag of any process.

4) A user process may decrease its own level, but not increase it.

5) A user process may reset a bit in its tag's bitmap to zero but not set a bit.

The tag for each process must be stored in the process table. There must also be corresponding kernel system

calls named get_tag and set_tag. Other aspects of their signatures may vary. The system calls are invoked

from user space via syscall(call_number, param1, param2). Your system call must be limited to no

more than two parameters!

Static Library

You will create a static library that provides and API to invoke the system calls in a directory named tags.

This will be composed of a header with name tags.h and a static library file named libtags.a. You will

also need to provide a Makefile for this library in the tags directory. All other sources must be contained

within the tags directory. Please note, these names of the files must match exactly!

You will create a tarred gzip file of the tags directory with name tags.tar.gz. When testing your code, we

will decompress the archive, enter the tags directory, and build. All functions enumerated below must be

made available by including "tags.h". See Submission for details.

In addition to the standard library functions, you will implement testing harness functions. The testing harness

functions are used to verify the system calls from the system library (and are required for full credit on this

assignment). We will call these functions to retrieve the information needed to make a system call. We will

then call the system call within our own program. This ensures that the implementation is not being done in

the user-level library.

Library Functions

These functions provide primary functionality to user programs. They should be made available by

including <tags.h>.

int set_tag(int pid, int new_tag)

Invokes system call which attempts to change the tag of the process identified by pid to the new tag value

new_tag. Returns new_tag on success, and -1 otherwise.

int get_tag(int pid)

Invokes system call which reads the tag of the process identified by pid. Returns the tag on success, and -1

otherwise.

Harness Functions

These functions serve as a testing harness to verify the system calls and are required for full credit on this

assignment. They shall be made available by including <harness.h>.

System call parameter retrieval data shall be returned as a pointer to an int array of 2-4 values that can be

used to make the system call. The array has this format:

 { call_number, num_parameters [, parameter1] [, parameter2] }

e.g.: { 42, 2, 867, 5309 } → syscall(42, 867, 5309)

int* retrieve_set_tag_params(int pid, int new_tag)

Returns an int array of 2-4 values that can be used to make the set-tag system call.

int* retrieve_get_tag_params(int pid)

Returns an int array of 2-4 values that can be used to make the get-tag system call.

int interpret_set_tag_result(int ret_value)

After making the system call, we will pass the syscall return value to this function call. It should return

set_tag’s interpretation of the system call completing with return value ret_value (i.e., what the library

call should return to the user program).

int interpret_get_tag_result(int ret_value)

After making the system call, we will pass the syscall return value to this function call. It should return get_tag’s

interpretation of the system call completing with return value ret_value (i.e., what the library call should return to the

user program).

System Library – Extra Credit

The system library is the means by which a process may invoke the system call in a program. For five points

extra credit you may add system library functions to the standard C library for your system. When compiled

using gcc, a user program must be able to link to these four functions without adding the .o files or the

libtags.a library to the linker's options or including the extra header files (i.e., the tags.h and harness.h files

must be included in the unistd.h file and the library functions added to glibc). Indicate whether you have done

the extra credit work in Canvas through the text comment feature.

Manual Pages

You are required to create manual pages detailing the two system calls and the four library function calls.

These manual pages shall be in man page format and in the appropriate manual section; you may copy and

modify an existing man page for this purpose.

You may also “double up” on the man pages by creating a single man page that handles a pair of calls (e.g.,

the library calls for both get_tag and set_tag). This can be accomplished by including both calls in the

page, saving with the name of one of the calls, then making a hard link for the second call’s man page (e.g., if

you created get_tag.2, then ln get_tag.2 set_tag.2 will allow that file to be accessed as either get_tag.2 or

set_tag.2 – see for example fopen(3)). This way, you can create three manual pages instead of six (as long as

each man page addresses two calls).

You must place each new man page in the proper location so that entering the command man <S> set_tag

or man <S> get_tag will return the man page for these calls in section <S>. You must do this by putting

copy (cp) and hard link command (ln) inside your library makefile that copies the manpages to their proper

location and creates hard links if necessary. You may check the manual path using the manpath(1)

command to see where the man pages are, and type "man man" to see how the sections are arranged. At a

minimum, the man page must have proper header/footer, name, synopsis, description, errors, notes, see also,

and author.

Testing
You should test your code for all behavioral cases. You will include this information in your report and

demonstrate the tests in your screencast video. You must also test that all your man pages display properly.

Submissions
You will submit the following at the end of this project:

⚫ Report (p1.txt) in man page format on Canvas, including link to unlisted screencast video

⚫ Kernel Patch File (p1.diff) on Canvas that includes sourcecode and makefile(s)

⚫ Compressed tar archive (tags.tar.gz) for tags library and the man pages on Canvas

Report

Your report will explain how you implemented the new system calls, including what changes were made to

which files and why each change was made. It will include description of how testing was performed along

with any known bugs. The report must be created using man format and be named p1.txt. The report should

be no more than two pages and should cover all relevant aspects of the project. It must also include a link to

an unlisted screencast video. The report must be organized and formatted professionally – this is not a memo!

Screencast

In addition to the written text report, you should submit a screencast (with audio) walking through the changes

you make to the operating system to enable the system calls. Additionally, the screencast should include you

showing/demonstrating your changes in action using your tests. (It should take no more than 5 minutes).

Patch File

The patch file will include all changes to all files in a single patch. Applying the patches and remaking the

necessary parts of the OS, then rebooting and then building the test code (which we will also copy over)

should compile the test program and link in the new library object code.

Grading
We will test your project by applying the patch by switching to /usr/rep/src/kernel and running:

$ git apply p1.diff
$ make && sudo make install && sudo make modules_install

Compressed Archive (tags.tar.gz)

Your compressed tar file should have the following directory/file structure:

tags.tar.gz
 tags.tar

 tags (directory)
 tags.h
 Makefile

 (Other source files)

 (All the manpages)

To build the library, we will execute these commands (from a non-kernel source directory)::

$ tar zxvf tags.tar.gz
$ cd tags
$ make
$ cd ..

To link against the library from the parent directory, we will execute this command:

$ cc -o program_name sourcefile.c -L./tags -ltags

To view the man pages, we will execute the commands:
$ man <S> <name of the function>

Please test your library build and linking before submission! If your library does not compile it will result in

zero credit (0, none, goose-egg) for the library portion of the project.

See the assignment rubric for details on grading.

Grading Rubric

Criterion Points

Report Covers all files changed 2

 Explains how and why files changed 3

 Testing, bugs 2

 Clarity, completeness, formatting 3

Screencast Walkthrough of all changes 2

 Addresses information flow through calls 2

 Demonstration of new functionality/tests performed 6

 Length is within limits (< 5 min); intelligible audio and video - deductions 0

Code Code is properly commented and understandable 1

 Code follows best practices (no manifest constants, good naming, etc.) 1

Functionality Library tests 14

 Harness test 14

Extra credit Implement library calls in glibc – up to +5 points 0

Expected Qualities On time, patch file works, makes, compiles, links, runs – deductions if not 0

Total Base project up to 50 pts, with max bonus, up to 55 50

