Project1 - Karate Member Dates - USE LINQ and ADO.NET
[bookmark: _GoBack]Form 1 - Let the user select a date from a DateTimePicker control. The program must display the first and last names, the phone numbers, and dates joined of all members who have joined before a given date or members who have joined on or after that date
[image:]
Note: You should create 2 dbcontext objects and LINQ queries, use one for each type of search.
At runtime, when the user switches between the radio buttons, their event handlers can assign one of the two binding sources to the DataSource property of the DataGridView control.
Form2 - The ListBox control displays a list of member names.
When the user selects a name in the ListBox, the DataGridView control on the same form displays the payment date and amount of all payments made by the selected member.
[image:]
You will need two LINQ queries:
1. The first one selects ID and (Last_Name + ‘,’ + First_Name) from the Members table, ordered by Last_Name.
2. The second selects Member_Id, Payment_Date, and Amount from the Payments table listed in ascending order by Payment_Date.
The query returns payment rows that match a particular member ID value.
When the user selects a name from the ListBox, your event handler will obtain the SelectedValue property from the ListBox and assign its value to the query parameter for the query that fills the grid. In that way, the grid shows only payments by the selected member. In Design mode, when you bind the ListBox to the data source, be sure to assign ID to the ListBox’s ValueMember property.

Project 2 - Karate Member Dates - Use DataSet and SQL
Form 1 - Let the user select a date from a DateTimePicker control. The program must display the first and last names, the phone numbers, and dates joined of all members who have joined before a given date or members who have joined on or after that date
[image:]
Note: You should create two datasets, one for each type of search. After binding the grid to the first dataset, a component named MembersBindingSource is created. If you then bind the grid to the second dataset, a second component named Members-BindingSource1 is created.
At runtime, when the user switches between the radio buttons, their event handlers can assign one of the two binding sources to the DataSource property of the DataGridView control. That would be a good time to call the Fill method of the appropriate DataAdapter.
Form2 - add a new form that lets the user make modifications to the Payments table. The Details view works well for modifying the payments, but you also must add a DataGridView to the form that displays member names and ID numbers. This grid helps the user to associate member IDs with member names.
[image:]

Form3 - The ListBox control displays a list of member names.
When the user selects a name in the ListBox, the DataGridView control on the same form displays the payment date and amount of all payments made by the selected member.
[image:]
You will need two data sources for this form:
1. The first one selects ID and (Last_Name + ‘,’ + First_Name) from the Members table, ordered by Last_Name.
2. The second data source selects Member_Id, Payment_Date, and Amount from the Payments table listed in ascending order by Payment_Date. You will need to add a query to the TableAdapter of this dataset. The query returns payment rows that match a particular member ID value.
When the user selects a name from the ListBox, your event handler will obtain the SelectedValue property from the ListBox and assign its value to the query parameter for the query that fills the grid. In that way, the grid shows only payments by the selected member. In Design mode, when you bind the ListBox to the data source, be sure to assign ID to the ListBox’s ValueMember property.

2

image1.png

image2.png

image3.png

