
COMP 3271: Computer Networks 1

TRU Open Learning

Project Part 1: Background Information

Overview – Your programming environment

Read the following discussion regarding C programming before you being Part 1 of

your project. You will need this information to complete Part 1 of the project.

Consult with your Open Learning Faculty Member (OLFM) if you have any

questions.

For the project, you will need to use Linux.

 For Mac users, terminal windows can be used.

 For Windows users, you need to install a Linux operating system: e.g.,

Ubuntu (http://www.ubuntu.com/). Although, you can install Ubuntu

system as a stand-alone operating system and setup dual-boot option that

will allow you, at boot time, to decide which operating system you want

to use. But, we recommend installing a virtual machine called VirtualBox

(http://www.virtualbox.org). VirtualBox is a free and powerful virtual

machine that allows an unmodified operating system with all of its

installed software to run in a special environment, on top of your existing

operating system. The physical computer on which the virtual machine is

running is usually called the "host", while the virtual machine is often

called a "guest".

VirtualBox runs on any modern operating system including Windows,

Linux, Macintosh, and Solaris hosts and supports a large number of guest

operating systems including but not limited to Windows, Linux, Solaris

and OpenSolaris, OS/2, and OpenBSD.

You can download the latest version of VirtualBox from

https://www.virtualbox.org/wiki/Downloads (Note: make sure you download

the correct version of VirtualBox installer for your host operating system, (i.e., if

you are running a 64-bit Windows, then choose “x86/amd64” binary).

Installation of VirtualBox on Windows operating system is easy, install it

the same way you would install any normal Windows program. If you

need help, please refer to the wikiHow website

(https://www.wikihow.com/Install-VirtualBox) for a step-by-step process

on how to install VirtualBox on your computer.

http://www.ubuntu.com/
https://www.virtualbox.org/wiki/Downloads
https://www.wikihow.com/Install-VirtualBox

COMP 3271: Computer Networks 2

TRU Open Learning

Once you install the VirtualBox on your windows machine, now you need

to install Ubuntu operating system on VirtualBox. Please follow the

instructions provided in the “Project Part 1 – How to Install Ububtu on

VirtualBox.pdf” document.

http://www.psychocats.net/ubuntu/virtualbox

 Note: You do not have to use any Integrated Development Environment

(IDE) or debugger.

 Use a text editor, e.g. nano (http://www.nano-editor.org/) or vi, to make

programs.

Objective – Why do we use C programming language?

The purpose of Part 1 in this Project is to introduce and provide you with some

experience and comfort in using C programming language. Most system

programs are written in C, not C++, for fast execution. For example, the kernel of

Linux is written in C.

For reference:

Kerninghan, B., and Ritchie, D. (1988). The C programming language (2nd ed.)

[Digital book]. New Jersey: Prentice Hall Software Series. Retrieved from

http://mef-lab.com/osnove-2016/C-Programming-Ebook.pdf

Tutorials Point (2018). C tutorial [Educational tutorial]. Retrieved from

https://www.tutorialspoint.com/cprogramming/index.htm

Pros and cons of C programming language

Pros:

 Fast execution

 Easy to handle memory ⇨ Good for system programming

 Bit operation

Cons:

 Complex concepts of pointer, type conversion, and memory allocation

 Note: The project in this course does not rely on those complex concepts

much. For the most part, we will use common syntaxes of C and Java.

http://www.psychocats.net/ubuntu/virtualbox
http://www.nano-editor.org/
http://mef-lab.com/osnove-2016/C-Programming-Ebook.pdf
https://www.tutorialspoint.com/cprogramming/index.htm

COMP 3271: Computer Networks 3

TRU Open Learning

Differences between C and Java

C Java

Procedural:

 No class

 Common data: global variables

 Abstract data type: struct, union

Object oriented:

 Class

 Common data: instance variables

 Abstract data type: class

Micro approach:

 Individual utility libraries

Macro approach:

 Utilities included in language

itself

Reference type variable:

 Pointer

Generally no reference, but objects

include the concept

Call by value, call by reference Call by value mostly, call by

reference for objects

Compiling: one file at a time; linking Compiling: cross-reference

Exercise program: welcome.c

Each program consists of:

 include, ; import in Java

 define for constants and ; final variable declaration for

constants in Java

 global variable declaration statements ; instance variables in Java

 main and other functions ; methods

COMP 3271: Computer Networks 4

TRU Open Learning

// it is like import statement in Java

#include <stdio.h> // standard i/o; this include statement is like

import statement in Java.

#include <stdlib.h> // standard library

#define SIZE 128 // constant definition; it is like final

variable declaration in Java.

int test = 5; // global variable; it is like a public

instance variable in Java.

int main(int argc, char* argv[]) // or char **argv

 // char* may be used for strings.

 // argc - # of arguments including

a.out

{

 int i;

 char name[32];

 printf(“Welcome to C programming world!\n”);

 printf(“%d arguments:\n”, argc); /* %d means an integer

 */

 for (i = 0; i < argc; i++)

 printf(“\t%s\n”, argv[i]); // %s means a string from the

next argument

 name[0] = ‘C’; name[1] = ‘o’; name[2] = ‘m’; name[3] = ‘p’;

name[4] = ‘u’;

name[5] = ‘t’; name[6] = ‘e’; name[7] = ‘e’; name[8] = ‘\0’; name[9] =

‘r’;

printf(“The length of %s is %d.\n”, name, strlen(name)); // what

will be printed?

}

COMP 3271: Computer Networks 5

TRU Open Learning

Compiling

To compile the program, you will use the following statements:

$ gcc welcome.c or // it will create a.out

$ gcc welcome.c –o welcome // it will create welcome instead

of a.out

Running

To run the program, use the following:

$./a.out

$./welcome

Basic data types

 char unsigned char // unsigned variables use the

left most bit

 short unsigned short // which is used as a sign (+/-) in

signed variables

 int unsigned int

 long unsigned long

 float unsigned float

 double unsigned double

 There is no Boolean type in C. Any non-zero value is considered as TRUE,

and zero value is considered as FALSE.

 Array data type for any data type

 Pointer data type for any data type: E.g., int*, char*, …

COMP 3271: Computer Networks 6

TRU Open Learning

Operators

The basic operators you will need include the following:

 +, -, *, /, ++, --, >, <, >=, <=, =, ==, !=, &&, ||, ...

operand1 & operand2 bitwise AND operation

operand1 | operand2 bitwise OR operation

operand1 ^ operand2 bitwise XOR operation

operand1 >> n shift rightward; the n left most bit[s] will

be filled with 0

operand1 << n shift leftward; the n right most bit[s] will

be filled with 0

~operand bitwise NOT operation; one’s complement

&operand the address of the first byte for the variable in the

main memory

*operand pointer to the address stored in the operand, i.e.,

the value stored in the address

 Implicit and explicit type conversion

Header files

 Include constants and data types

 For example, /usr/include/stdio.h includes constants and data types that

are used for functions in the standard input/output library

 In a program,

o #include <stdio.h> /* /usr/include/stdio.h */

 <...> is searched from /usr/include

 “...” is searched from the current working directory

 Note: The include statement is like the import statement in Java.

COMP 3271: Computer Networks 7

TRU Open Learning

main() function

There should be one main function like main method in Java programs.

int main(int argc, char* argv[])

argc contains the number of arguments that are given to the program when it is

executed, including the name of the program itself

argv[] array of char*

char* points to an address which contains a string that is a list of characters

ending with ‘\0’ character.

 very similar to a char array

argv[0], ... are strings for the argument on the command line when the

program is executed.

 e.g., $ nano welcome.c

Input and output (i/o)

If you retrieve the manual for printf, e.g., $ man –S 3 printf,

#include <stdio.h> // necessary header file for printf()

int printf(const char *format, …)

format includes all information how to print; %d, %c, %f, %s, %u, %o, %x, …

For example:

printf(“%d %c %f %u %s”, i, c, x, &x, buf); // int i, char c, float

x, address of x, char* buf or char buf[]

getchar() a character from stdin

getline() a line from a FILE

Note: We will not use these functions in this course if possible.

COMP 3271: Computer Networks 8

TRU Open Learning

For file input and output (i/o), use the following:

open() $ man –S 2 open

 int open(...); // returns the

file descriptor

read() $ man –S 2 read

 int read(int fd, char* buf, int length); // fd is

the return value from open()

// buf could be declared as char[...] in

// the function that calls read().

 // This function will read length bytes

 // and store them into buf, and will

 // return the number of bytes read.

 // what if the

return value is < length?

write() $ man –S 2 write

 int write(int fd, char* buf, int length); // fd is

the return value from open()

// buf could be declared as char[...] in

// the function that calls write().

 // This function will write length bytes

 // stored in buf into the file, and will

 // return the number of bytes written.

close() $ man –S 2 close

 int close(fd);

Note: All the system functions return a negative value when there is an error.

Predefined file descriptors – no need to open again; already opened

0 standard input

1 standard output

2 standard error

COMP 3271: Computer Networks 9

TRU Open Learning

Exercise Program: file_copy.c

Review the following sample code combining the above elements:

/*

 * copy a file to another file

 */

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h> // These four header files are necessary to

use file i/o functions.

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

/* argv[1]: from */

/* argv[2]: to */

int main(int argc, char* argv[])

{

int in, out;

in = open(argv[1], O_RDONLY); // O_RDONLY is

defined in /usr/include/sys/types.h

if (in < 0) {

 printf(“Cannot open the file %s\n”, argv[1]);

 exit(1);

}

out = open(argv[2], O_WRONLY | O_TRUNC | O_CREAT, S_IRUSR

| S_IWUSR);

if (out < 0) {

 printf(“Cannot create the file %s\n”, argv[2]);

 exit(1);

}

COMP 3271: Computer Networks 10

TRU Open Learning

... // read some bytes from in and write them into out.

... // print those bytes onto the screen while copying.

close(in);

close(out);

... // test if the two files have the exactly same

contents, and print the result

}

Global variables

 Variable declared not inside a function

 Common data for all functions in the file

 It is like public instance variables in Java.

 In order to access a global variable declared in other file,

 extern data_type variable_name;

User defined data type

 define – macro and constant definition; like final variable declaration in Java

#define BUF_SIZE 512

 struct – it is like a class definition in Java, which has only instant variables

struct record {

 int number;

 char name;

};

struct record kildong_record;

 union

union weight {

 int kilo;

 int pound;

};

union weight kildong_weight;

 typedef

COMP 3271: Computer Networks 11

TRU Open Learning

typedef struct record record;

record kildong_record;

Note: We will not use union and typedef in this course if possible.

Linking and libraries

 $ gcc –c main.c compile main.c into
main.o

 $ gcc main.o student.o –o test –lm –lm means library

libm.a that is in /usr/lib/

Handling strings

A string in C is a consecutive list of bytes (or characters), usually in an array, ending

with ‘\0’ (0 value). When we use general data do not use these functions because

even ‘\0’ can be a part of the data.

 <string.h> related header file

 strcpy() string copy; e.g., strcpy(dest_str, src_str); // two

arguments could be char arrays

 strcpy(buf, “Welcome to ...\n”);

 // buf is a char array of enough

room

 strlen() string length; e.g., len = strlen(argv[0]);

 strcat() string concatenation; e.g., strcat(dest_str, src_str);

 strcmp() string compare; e.g., i = strcmp(first_str, second_str);

Note: We will not use strcat() and strcmp() in this course if possible.

 atoi() convert to integer; e.g., i = atoi(argv[2]);

 atof() convert to float; e.g., f = atof(argv[1]);

Handling memory

 malloc() allocate dynamic memory

 free() purge an allocated dynamic memory

Note: We will not use them in this course if possible.

