
21010 – Arquitetura de Computadores: e-fólio B – 2019/2020 Pág. 1 de 3

Consider the classic “fifteen puzzle”, (https://en.wikipedia.org/wiki/15_puzzle). The game

consists of a 4x4 position board in which there are 15 pieces, numbered from 1 to 15,

which must be placed in order, leaving a free space in the last square (bottom right), as

shown in the figure:

The pieces fit together and each piece can only move vertically or horizontally to the

free space.

From the above position it can be shown that there are (4x4)! / 2 possible configurations

of different arrangement of pieces.

Such a puzzle is considered solvable if it is possible, from the initial set of numbers on

the board, to reach the final position described above.

The following figure represents a solvable puzzle:

A procedure is known for determining whether a particular set of numbers on the board

constitutes a solvable puzzle or not. This procedure consists of two distinct steps:

https://en.wikipedia.org/wiki/15_puzzle
https://en.wikipedia.org/wiki/15_puzzle
https://en.wikipedia.org/wiki/15_puzzle

21010 – Arquitetura de Computadores: e-fólio B – 2019/2020 Pág. 2 de 3

1. Calculate the total number of inversions of each of the 16 board positions from the

start position to the end position;

2. Calculate the Manhattan distance from the space initial position relative to its final

position.

If the sum of these two values is even then this is a solvable puzzle.

The Manhattan distance (https://en.wikipedia.org/wiki/Taxicab_distance) between two

points on a plane is calculated by counting 1 for each vertical position that has to be

traversed to be on the same row, plus 1 for each horizontal position so that both points

are in the same column. For the example puzzle the Manhattan distance from empty space

to the bottom right is 4, 2 rows and 2 columns away.

The total number of inversions is calculated by considering the board with a linear ordering

of its elements, and checking for each element how many numbers appear in later

positions that are smaller than the number in the element under consideration. For the

example puzzle, we have in the second row of the table the inversions per element, the

first row corresponding to the elements in linear order:

5 1 4 8 2 16 7 12 10 11 13 14 6 9 15 3

4 0 2 4 0 10 2 5 3 3 3 3 1 1 1 0

The total number of inversions in this case is 42. Adding 42 to 4 relative to the distance of

Manhattan from white space gives us 46, which is even, which means that the puzzle

presented is solvable. Note that 16 (ie 4x4) is used to represent white space.

a) Develop a P3 Assembly program that for a given puzzle calculates the Manhattan

distance from empty space to the bottom right corner.

The program must have as input an integer vector of 16 positions, representing a certain

puzzle, presented in memory in a row, starting at position 8000h. The program output, ie

the requested Manhattan distance, must be displayed in register R1. If there is an error

situation, the value FFFFh must be returned in R1.

b) Develop a P3 Assembly program that receives a given puzzle as input, in the same

format as the previous paragraph, and returns in register R2 the total number of inversions

of each of the 16 positions of the given puzzle board, until the final position. If there is

an error situation should be returned in R2 the value FFFFh.

c) Develop a P3 Assembly program that receives a puzzle in the format described in

the previous paragraphs and determines if it is resolvable, in which case the value 1 should

21010 – Arquitetura de Computadores: e-fólio B – 2019/2020 Pág. 3 de 3

be entered in the R3 register. If the puzzle is not solvable the value returned at the end

of the program in R3 should be 0. If any error occurred, the value returned in R3 must be

FFFFh. In the example file (puzzles.txt) 5 cases of 4x4 puzzles are given for which you

must record in a table to include in the report the name of the puzzle, if the puzzle is

solvable, the number of clock cycles and the number of instructions.

d) Knowing that what has been said about the 4x4 dimension puzzle is also valid for

an NxN dimension puzzle, develop a P3 Assembly program that checks to see if a given

NxN puzzle is solvable. The dimension N will be indicated at position 8000h, followed by

the puzzle values, in the same format as in the previous paragraphs, with the appropriate

adaptations corresponding to the puzzle size. The result should be presented in R3, as in

the previous paragraph. 5 puzzles (puzzles.txt) for dimensions 3, 4, 5, 7, and 10 (total of

25 test cases) are shown in the sample file, for which you must record in a table to include

in the report the name of the puzzle, its dimension (N), if the puzzle is solvable, the

number of clock cycles and the number of instructions.

A small report in doc format of up to 5 A4 pages, with all the calculations and all the

options taken in the construction of the programs should be delivered.

Rules for writing Assembly programs:

All programs should end with the following statement:

END: JMP END ;End of the program

