

Processor P3 Simulator Manual

.

.

.

2

Content

1. Introduction .. 3

2 architecture processor P3 ... 3

2.1 Records .. 3

2.2 Bit State ... 4

2.3 Memory ... 4

2.4 Inputs / Outputs .. 4

2.5 Interruptions .. 5

Assembler 3 .. 6

3.1 evocation ... 6

3.2 Instruction Set ... 6

Constants 3.3 ... 7

3.4 Addressing Modes ... 8

3.5 Labels ... 9

3.6 Comments ... 9

3.7 Pseudo-Instructions ... 9

3.8 Assembly Instructions.. 10

4 Simulator ... 17

4.1 Evocation ... 17

4.2 Environment .. 17

4.2.1 Menus .. 18

4.2.2 Instruction counters and Clock Cycles ... 20

4.2.3 Records .. 20

4.2.4 Contents of Memory ... 21

4.2.5 Program disassembled .. 21

4.2.6 Command Execution and Interruption .. 21

4.3 Debugging .. 22

4.4 Control Unit ... 22

4.4.1 Records to Internal Control Unit ... 22

4.4.2 Clock Button .. 24

4.5 Micro-Program .. 24

4.6 Input and Output Devices .. 25

4.6.1 Window Text ... 25

4.6.2 Window Card ... 26

4.6.3 Timer ... 27

4.6.4 Mask Interruptions .. 28

The formats of the Assembly Instructions .. 30

B Content of ROM Control .. 34

3

1 Introduction

This document describes the operation of the simulator to the processor P3. This allows the program

to simulate the functional level of the processor described in Chapters 11 and 12 of the book:

Introduction to Digital Systems and Microprocessors G. Rice,

J. Miller and A. Oliveira

IST Press, 1st Edition, 2005

P3 simulator consists of two programs, the simulator itself, p3sim, and an assembler, p3as. The

program converts p3as described in assembly language programs that processor to an object file.

Once converted format for this purpose, the program may be uploaded to p3sim simulator. The

simulator p3sim allows not only the normal running and step-by-step program, but also the

execution of only one clock cycle. This operating mode is useful for observing the progress step-by-

step micro-code. In order to make it more interesting interaction with the microprocessor, they

defined a set of input and output devices. In particular, this simulator emulates all the inputs and

outputs of DIO5 plate Digilent, Inc.

This document is divided into three parts. The first part introduces the architecture of the

processor P3. The second part describes the use of the assembler p3as. The third part presents the

p3sim simulator.

2 Architecture Processor P3

2.1 records

The processor P3 contains the following records visible to the programmer;

R0-R7: general purpose registers. The register R0 can not be changed

and always has the value

0.

PC: program counter, contains the next instruction address to be

executed. It can be accessed directly with assembly

instructions only being changed with the execution sequence

control instructions.

SP: stack pointer, pointing to the top of the stack. It is also

used in an indirect way and can only be manipulated directly

(for initialization) through a SP MOV instruction, R [1-7].

RE: status register, register in which is stored the status bits

(flags) of the processor described in the following section.

Also there are no instructions to manipulate this register

directly.

All these registers are initialized to 0 after a reset of the processor.

4

2.2 Bits of State

From the programmer's perspective, there are five status bits or flags in this processor. The status

bits are stored in the 5 least significant bits of the SR register, containing the remaining bits of this

register 0.

The meaning of the status bits from the lowest bit to the highest register RE weight, is:

O: overflow or over, indicates that the result of the last

arithmetic operation exceeds the capacity of the destination

operand. In other words, the result can not be represented in

2's complement with the number of bits available in the

destination operand, getting this, so with an incorrect value.

N: negative or sign indicates that the result of the last operation

was negative, which in addition to 2 is equivalent to saying

that the most significant bit of the destination operand was the

first.

C: carry or transport, it indicates that the last operation

generated a transport bit beyond the last position in the

destination operand. It can also be modified by software through

the instructions STC, CLC and CMC.

Z: zero indicates that the result of the last operation was 0.

E: enable interrupts, enables or disables interrupts, as is 1 or

0. This is the only status bit that is only changed by software,

through ENI and DSI instructions.

2.3 Memory

The addressable memory space is 64k words (16-bit address bus), where each word is 16 bits (data
bus width). Access to a memory location can be done with any instruction, using the appropriate
addressing mode.

2.4 enistered / Outs

The space of inputs and outputs (I / O) memory is mapped. Memory addresses from FF00h are

reserved for the space of inputs / outputs. Thus, an instruction can have access to any input / output

device that is mapped to this top area of the processor memory.

In the case of this simulator, input / output devices are available:

• text window device that provides an interface with the keyboard and the computer monitor.

Interface has 4 ports:

– reading, FFFFh address: port for receiving keyboard characters in the text window;

– writing, FFFEh address: port that allows you to write a certain character in the text

window;

– state, FFFDh address: port that allows you to test whether there was any button pressed

in the text window;

5

– control FFFCh address: port that lets you position the cursor in the text window, a

position where the next character will be written.

• pushbuttons: a set of pressure switches 15. The activation of each of these buttons generates

an interrupt vector corresponding to the interrupt.

• switches, FFF9h address: 8 set of switches whose state can be obtained by reading this

address.

• LEDs, FFF8h address: each word bit written in this port defines which of the 16 LEDs are

connected.

• display 7 segments, FFF0 addresses FFF1h, and FFF2h FFF3h: each of these ports writing 7

controls a set of LEDs forming a display.

• display LCD or liquid crystal: text display with 16 columns and two rows. It has two write ports:

– FFF5h address: port that allows you to write a given character on the display;

– FFF4h address: port that lets you position the cursor on the display, a position where the

next character will be written.

• mask breaks FFFAh address: Position a filter that allows you to individually select which of the

first 16 interrupt vectors (0-15) are enabled. After a reset, all the bits of the interrupt mask

are 0.

• timer device which provides the generation of an interrupt after an actual time interval

specified by the user. It has two interface ports:

– control FFF7h address: port which allows to start (placing the least significant bit to 1)

or stop (setting this bit to 0) the timer.

– count value, FFF6h address: port that allows you to specify the number of intervals of

100 ms after which the timer generates an interrupt.

Control of these devices is explained in greater detail in Section 4.6.

2.5 interruptions

The simulator provides 15 buttons for generating external interrupts (in addition to these, the

simulator is just one source of interrupts, timer). Any of these interruptions leads to the activation

of a signal INT on one of the external pins of the processor. At the end of execution of each

instruction, this signal is tested to see if there are any pending interrupt. In this case, they are carried

out two tests:

• And the status bit (enable interrupts) must be active.

• bit of the corresponding interrupt mask this interrupt vector must be active.

If these two conditions are met, it is called the service routine of this interruption, determined by

the interrupt vector read from the data bus. The addresses of the interrupt routines are in the

Interrupt vectors table, a table with 256 positions stored in memory from the FE00h address. Thus,

the program counter PC is loaded with the value of memory location M [Photo FE00h +].

6

By default, the interrupt vector associated with each of the 15 interrupt button is simply the

button index. However, this can be changed by the user through the simulator interface. This

interface also allows you to individually disable each interrupt buttons.

The interrupt vector is associated with the timer 15, and this is fixed.

The call to the interrupt service routine saves the RE register on the stack and disable interrupts

(E = 0). It is the programmer's responsibility to safeguard any record that is modified in this routine.

The routine must be terminated with the RTI instruction that resets the value of RE from the stack.

3 assembler

3.1 evocation

The assembler p3as recall mode is simply:

p3as $ <name> .as

The assembly file name must have extension .as. If no assembly errors are generated two files:

<Name> .exe : File with binary code, ready to run in p3sim simulator.

<Name> .lis : File with the value assigned to the references used in the assembly program.

3.2 Instruction Set

The assembly instructions accepted by the assembler p3as are presented in Table 11.4 of the book.

In addition to these instructions, the assembler recognizes a set of commands (called pseudo-

instructions Table 11:16 the book) that, while not generate binary code, allow you to reserve space

for variables or make the code more readable. The total instruction recognized by p3as are shown

in Table 1, grouped into classes.

The condition .cond in conditional jump instructions (... BR cond, cond JMP and CALL cond) can

be one of:

O, NO excess status bit (overflow)

N, NN: signal status bit (negative)

C, NC: transport status bit (carry)

Z, NZ: zero state bit are met (enable)

I NI: bit indicating whether there is a pending interrupt

P, NP: positive (
Pseudo arithmetical logical displacement Control Transfer. generic

ORIG BUSINESS WITH SHR BR MOV NOP

EQU INC AND SHL BR. cond MVBH ENI
WORD DEC OR SHRA JMP MVBL DSI
STR ADD XOR sHLA JMP.

cond
XCH STC

TAB ADDC TEST ROR CALL PUSH CLC

7

 SUB ROL CALL.

cond
POP CMC

 Subb RORC RET

 CMP ROLC RETN

 MUL RTI

 DIV INT

Table 1: P3 instruction set.

These combinations allow each of these test conditions and make the jump if the condition is 1 or

0, respectively.

Arithmetic instructions assume the operands in addition format for 2. Exceptions to this rule are

the multiplication and division to assume unsigned numbers. In the case of these two operations

will have to be the programmer to take care of manipulating the signal apart.

In this embodiment, there are directions of 0, 1 and 2 operands. In the second operand

instructions, one of which has to be necessarily a record. The other operand may have several

addressing modes, as explained below. The details of the operation of each instruction (the

operation performed and the bit changed state) are also presented below.

3.3 Constants

The fact that the processor P3 to be a 16-bit processor defines the maximum possible to specify a

constant. Thus, the valid range for positive integers will be

0-216 - 1 and integers in 2's complement of -215 to +215 - 1.

Constant values can be specified in three ways in assembly code:

numerical value in binary: a numerical constant to be interpreted in binary must be terminated with

the letter b; Valid values are between -100000000000000b and

 1111111111111111b .

numerical value in octal: to a numerical constant is interpreted to be octal

terminated by the letter; Valid values are between -100000o and 177,777th.

numerical value in decimal: any integer value between -32768 and 65535. It may optionally be

terminated with the letter D, although this is assumed when no other base is indicated;

numerical value in hexadecimal: a numerical constant to be interpreted in hexadecimal must be

terminated with the letter h; Valid values are between -8000h and FFFFh.

Character alphanumeric: a character in single quotes, for example, 'g' is converted to its ASCII code.

Note, however, that the use of constants in the middle of assembly code (or any other

programming language) is extremely unwise. Instead, you must use the EQU command to define

constants (see Section 3.7). This practice on the one hand, makes the code more readable, as the

symbol associated with the constant, if suitably chosen, gives a clue about the action that you take,

and on the other hand, allows for easier updating of the code, as constants that are associated not

have to be changed in various places within the code (perhaps failing to some), but simply in line

with the EQU command.

8

3.4 Addressing Modes

The operands used in the assembly instructions may have 7 addressing modes, as follows. The
meaning of the symbols used in this section is: op: operating;

Rx: Rx register. The processor has 8 to the programmer

visible registers, so0 ≤ x ≤ 7, wherein R0 is always equal to 0;
W: W constant value (16 bits);

 M [y]: reference to the memory location with address y;

 PRAÇA : program counter register (program counter);

 SP: pointer register to the stack (stack pointer)

Addresses for Registration op =

The value of the operand is the Rx log contents.

Addressing by Indirect Registration

The value of the operand is the contents of the memory location whose address is the

Rx log contents.

Immediate addressing op W =

The value of the operand is W. Of course, this mode can not be used as destination operand.

addressing Direct

The value of the operand is the contents of the memory location with the address W.

Indexed addressing

The value of the operand is the contents of the memory location with the address

resulting from the sum of W with Rx content, R + W. Note: The W + Rx version is

not accepted by the assembler.

Relative addressing

The value of the operand is the contents of the memory location with the address

resulting from the sum of W with the PC content, PC + W. Note: The W + PC version

is not accepted by the assembler.

Based addressing

The value of the operand is the contents of the memory location with the address

resulting from the sum of W with the SP content, SP + W. Note: The W + SP version

is not accepted by the assembler.

The use of these addressing modes, the following restrictions:

- in the case of instructions with two operands, for one of them must necessarily be used by

the address register.

- immediate mode can not be used as destination operand, for obvious reasons.

Rx

op M = [RX]

op M =

[W]

op M = [Rx +

W]

op M = [PC +

W]

op M = [SP +

W]

9

- the instructions MUL and DIV, for use as a destination both operands (see description below),

can not use the immediate mode in any of the operands. Moreover, the two operands must

not be the same due to limitations on processor architecture which causes part of the result

is lost.

3.5 Hang tags

To reference a particular memory location, you can put a label (label) before the statement that will

stay in that position. The label is a name (set of alphanumeric characters plus the characters '_', in

which the first may not be a digit) followed by ':'. For example,

Comebackhere:R1 INC

Now if you want to make a jump to this instruction, you can use:

BR Comebackhere

instead of calculating the address where the instruction INC R1 will be after assembly.

To facilitate the reading of the assembly code is agreed that these labels are capitalized words

all together: first letter of each word capitalized and remaining in lower case, as in the previous

example Comebackhere.

The value assigned to the labels can be found on file with the extension .lis generated when

executing the p3as.

3.6 comments

A comment starts with the character ';', which tells the assembler that all text that follows this line

should be ignored in the assembly code of the translation process.

3.7 Pseudo-instructions

Called pseudo-instructions to the set of commands recognized by the assembler that are not

assembly instructions, but allow the assembler to a set of information and guidelines necessary for

the proper implementation or to simplify their use. The function of the pseudo-instructions is on

the one hand, to control how code is generated (for example, indicating the memory position where

to put the executable or reserved memory locations for data), on the other hand, to define symbols

(constant or memory locations) that make it more readable and easier to program code. This

section describes the instructions used by the pseudo-assembler p3as.

ORIG

Format: ORIG <address>

Occupation: ORIG the command lets you specify in the <address> the first memory in which a

program or data block is loaded into memory. This command may appear several times in the code,

allowing you to define blocks in different memory areas.

EQU

Format: <Symbol> EQU <const>

10

Occupation: EQU command allows you to assign a const value to a symbol. it is agreed that these

symbols are words all in upper case, with possible use of separation character '_', for example,

NUM_LINES.

Note: This command associates a name to a constant. This allows, in assembly code instead of a

numerical value which generally does not give much information, you use a name that may indicate

what action it is taking in this code point. Additionally, it allows a subsequent change suffice to

change the EQU line command to change the spreading code at all.

WORD

Format: <Label> WORD <const>

Occupation: The command WORD booking a memory location to contain a variable assembly

program, associating this position the name specified in <label>. The const field indicates the value

to that memory location must be initialized. It is agreed that these labels are capitalized words all

together: first letter of each word capitalized and remaining in lowercase, for example CicloInterno.

STR

Format: <Label> STR '<text>' | <const> [, '<text>' | <const>]

Occupation: The command STR puts in consecutive memory locations text that is enclosed in single

quotes or the value of <const>. In the case of <text>, the ASCII code for each character in single

quotes is a memory location (so use as many memory locations as there are characters in <text>).

One can use more than one parameter, separated by commas, concatenates them being made in

the memory. <Label> is the address of the first character. The convention for the names of these

labels is the same as for WORD.

TAB

Format: <Label> TAB <const>

Occupation: The TAB command buffer the number of memory locations specified in the field
<Const> without the boot with any value. <Label> is the address of

the first position. The convention for the names of these labels is

the same as for WORD and STR.

3.8 Assembly instructions

The assembly instructions valid for the micro-processor P3 are presented below in alphabetical

order. It is indicated instruction format, the function performed and modified flags (Z zero; C, carry

or transport, N or negative sign O, excess or overflow, E, enable the interrupts).

ADD

Format: ADD op1, op2 Flags: ZCNO

11

Action : op1+ op2 , Adds to the value of op1 op2.

: ADDC op1, op2 Flags: ZCNO:

Action : OP1← OP1 + OP2 + C , except that the same ADD adds a more transport case status bit is
1.

AND

Format: AND op1, op2 Flags: ZN

 op1 ∧ op2. Does the bitwise logical-to-bit of the two operands.

BR

Format: BR <shift> Flags: None

: PC ← PC + <Shift>, branch, unconditional relative jump to <shift> memory locations ahead

(or behind, if <shift> is negative) the current position. The <offset> must be between -32 and 31.

Typically <offset> is specified with a label.

BR.cond

Format: BR.cond <offset> Flags: None

Action: Conditional relative jump based on the value of a given condition. The versions available are:

Condition Transport Signal Excess Zero Interruption Positive

Truth BR.C BR.N BR.O BR.Z BR.I BR.P

False BR.NC BR.NN BR.NO BR.NZ BR.NI BR.NP

If the condition is met, the next instruction to be executed will be the address of the PC + <shift>

(PC ← PC + <shift>). Otherwise, it acts as a NOP. The <offset> must be between -32 and 31. Typically

<offset> is specified with a label.

: CALL <address> Flags: None

 : M [SP] ← PC, SP ← SP - 1, PC ← <address>, call the subroutine beginning on
<Address>. The address of the instruction following the CALL is

placed on the stack and is made a jump to the subroutine. Usually

<address> is specified with a label.

CALL.cond

Format: CALL. cond <address> Flags: None

12

Action: Conditional call to a subroutine based on the value of a given status bit. The versions

available are:

Condition Transport Signal Excess Zero Interruption Positive

Truth CALL.C CALL.N CALL.O CALL.Z CALL.I CALL.P

False CALL.NC CALL.NN CALL.NO CALL.NZ CALL.NI CALL.NP

If the condition is fulfilled, behaves as a CALL statement. Otherwise, it acts as a NOP. Usually

<address> is specified with a label.

CLC

Format: CLC

Action: C clear, places the bit state 0 transportation.

CMC

Flags: C

Format: CMC

Action: Complements the bit value of state transport.

CMP

Flags: C

Format: CMP op1, op2 Flags: ZCNO

Action: Compares the operands op1 and op2, updating the status bits. Performs the same operation

as SUB op1, op2 without changing any of the operands. It is usually followed in the program by a BR

instruction. cond, JMP. cond or CALL. cond

: COM op Flags: ZN

op Makes the complement bit-by-bit op.

DEC

Format: DEC op Flags: ZCNO

 op - 1, Op decrements by one.

DIV

Format: DIV op1, op2 Flags: ZCNO

Action: performs integer division of op1 by op2, leaving the result in op1 and the rest in op2. Takes

operands unsigned. The status bit is 1 in the case of division by 0. The status bit C and N are always

0. Once both operands are used to store the result, none of them can be the immediate mode. For

the same reason, the two operands must not be the same because of the result will be lost.

13

DSI

Format: DSI Flags: E

Action: disable interrupts, sets the status bit and the 0, thereby inhibiting interruptions.

ENI

Format: ENI Flags: E

Action: enable interrupts, sets the status bit and the first, allowing interruptions.

INC

Format: INC op Flags: ZCNO

 p + 1, Op increments by one.

INT

Format: INT const Flags: EZCNO

Action: M [SP] ← RE SP ← SP - 1 M [SP] ← PC, SP ← SP - 1, RE ← 0 PC ← M [FE00h + const],
generates an interrupt with the vector const . This vector must be between 0 and 255. This
interruption always occurs regardless of the state of the bit value and enable interrupts.

JMP

Format: JMP <address> Flags: None

Action: PC ← <address>, jump, unconditional absolute jump to the memory location to the value

<address>. Usually <address> is specified with a label.

JMP.cond

Format: JMP. cond <address> Flags: None

Action: Conditional absolute jump based on the value of a given condition. The versions available

are:

Condition Transport Signal Excess Zero Interruption Positive

Truth JMP.C JMP.N JMP.O JMP.Z JMP.I JMP.P

False JMP.NC JMP.NN JMP.NO JMP.NZ JMP.NI JMP.NP

If the condition is met, the next instruction to be executed will be indicated by <address> (PC ←

<address>). Otherwise, it acts as a NOP. Usually <address> is specified with a label.

: MOV op1, op2 Flags: None

14

 op2, Copy the content to op2 op1.

In addition to general addressing modes to all instructions (as Section 3.4), this instruction allows to

read and write the pointer register SP stack, but only in conjunction with the addressing mode

register: MOV SP, Rx and MOV Rx, SP. The first of these instructions is required at the start of all

programs that use the stack.

MUL

Format: MUL op1, op2 Flags: ZCNO

 op1 × op2Multiplies op1 by op2, taking them as numbers without sig-

nal. As the 32-bit result requires both operands are used for storing: op1 is most significant with the

16 and 16 op2 with the least significant. The Z status bit is updated according to the result, the

remaining are 0. Once both operands are used to store the result, none of them can be the

immediate mode. For the same reason, the two operands must not be the same because of the

result will be lost.

: MVBH op1, op2 Flags: None

 FF00h), Copy the octet greater weight to op2

octet greater weight op1.

: MVBL op1, op2 Flags: None

 FF00h) ∨ (op2 ∧ 00FFh), Copy the octet less weight to op2

octet lower weight op1.

BUSINESS

Format: BUSINESS op Flags: ZCNO

 op, Changes the sign (2's complement) operand op.

NOP

Format: NOP Flags: None

Action: In operation, does not change anything.

OR

Format: OR op1, op2 Flags: ZN

 op1 ∨ op2Makes the OR bit-by-bit logic of the two operands.

POP

Format: POP op Flags: None

15

SP + 1, Op ← M [SP], Copies the value from the top of the stack to op and reduces

the size

PUSH

Format: PUSH op Flags: No Action: M [SP] ← op, SP ← SP - 1, op puts at the top of the stack.

RET

Format: RET Flags: None

 SP + 1, PC ← M [SP], Returns from a subroutine. The return address is obtained

the top of the stack.

: RETN const Flags: No Action: SP ← SP + 1, PC ← M [SP] ← SP SP + const returns a

subroutine releasing const top of stack positions. This statement allows you to return from a

subroutine automatically removing parameters that have been passed to this subroutine through

the stack. Const The value must be between 0 and 1023 (10 bits).

ROL

Format: ROL op, const Flags: ZCN Action: rotate left, rotates to the left of bit op the number of

times indicated by const. Same operation as simple displacement SHL but left bits are not lost, being

placed at positions further to the right op. The value const must be between 1 and 16.

ROLC

Format: ROLC op, const Flags: ZCN Action: Rotate left with carry, the same operation as NOR, but

involving the transport bit state: the value C is placed in the rightmost position and op leftmost bit

is placed op value C. const must be between 1 and 16.

ROR

Format: ROR op, const Flags: ZCN Action: Rotate Right, rotates right op bits the number of times

indicated by const. Same operation as simple displacement SHR, but the right is not lost bits, being

placed in the leftmost positions op. The value const must be between 1 and 16.

RORC

Format: RORC op, const Flags: ZCN Action: Rotate right with carry, the same operation as ROR, but

involving the transport bit state: the value C is placed in the leftmost position OP and the right-most

bit is placed op value C. const must be between 1 and 16.

RTI

Format: RTI Flags: EZCNO

16

 SP + 1, PC ← M [SP] SP ← SP + 1 RE ← M [SP], Return from interrupt returns

a service routine to an interrupt. The return address and status bits are taken from the top of the

stack, in that order.

SHL

Format: SHL op, const Flags: ZCN

Action: shift left, shift to the left of bit op the number of times indicated by const. The leftmost bits

are lost op 0 and is placed in the rightmost position. The transport status bit is the value of the last

bit lost. The value const must be between 1 and 16.

sHLA

Format: SHLA op, const Flags: ZCNO

Action: arithmetic shift left, same operation as SHL, but updating the status bits corresponding to

arithmetic operations. It allows to realize so expeditiously an option multiplication by 2n. The value

const must be between 1 and 16.

SHR

Format: SHR op const Flags: ZCN

Action: shift right, shift right the bits of the op number of times indicated by const. The more bits to

the right op is lost and 0 are placed in the leftmost position. The transport status bit is the value of

the last bit lost. The value const must be between 1 and 16.

SHRA

Format: SHRA op, const Flags: ZCNO

Action: arithmetic shift right, shift to the right of p bits, but keeping the sign bit. The rightmost bit
of op are lost, but the leftmost bits retain the previous value. The transport status bit is the value
of the last bit lost. It allows for expeditiously form an option division by 2n. const between 1 and
16.

STC

Format: STC

Action: Set C, places the bit state of transportation 1.

SUB

Flags: C

Format: SUB op1, op2 Flags: ZCNO

17

 op1 - op2Subtracts the value of the op1 op2.

: Subb op1, op2 Flags: ZCNO

 - ÇEqual SUB subtracts more except a case that the status bit

Transport is 1.

TEST

Format: TEST op1, op2 Flags: ZN Action: tests the bits of the operands op1 and op2, updating the
status bits. Performs the same operation as AND op1, op2 without changing any of the operands.

XCH

Format: XCH op1, op2 Flags: None

Action: Exchange op1 / op2, op1 op2 ←, ← op2 op1, exchange the values of op1 and op2.

XOR

Format: XOR op1, op2 Flags: ZN

. It logic operation EXCLUSIVE-OR bit-by-bit of the two operands.

4 Simulator

4.1 evocation

The recall mode p3sim simulator is simply:

$ P3sim [<name> .exe] where <name> .exe the executable is generated by
the assembler p3as that is intended to simulate. The brackets indicate that the file <name> .exe is
optional, the program to simulate can also be charged through the simulator interface.

To exit the simulator should choose the option Exit the File menu.

4.2 Environment

The simulator evocation launches a dialog box as shown in Figure 1.

18

Figure 1: Simulator Interface.

In this window, there are 6 different sections which are explained next in order from top to

bottom in the window.

4.2.1 menus

In the window 5 the upper menus exist that open when selected:. File Settings, commands, and

debugging See Any of these menus can be kept open by selecting the first row (dashed).

The options for each menu are as follows:

• This menu is related to the handling of files, either for reading or for writing.

loads Program It allows to load the simulator a new program generated by p3as.

Write Memory write to a file the current memory contents. The file is generated text with a

memory location for each line, with address and content of that position. All these

values are 16 bits and are in hexadecimal.

loads memory directly carries some memory locations. The input file should be in text, with

the same format generated by the command Write Memory, a memory location for each

line, with address and content of that position. They can be specified the number of

positions that you want and your order is not important. All these values have to be in

hexadecimal and be 16 bits.

19

Load Control ROM It allows to change the contents of the ROM of the control unit. This option

is useful to modify the micro-program instructions. The input file must be text, with one

line per memory location. In each line must contain the address of the location to change

(the ROM has a 9-bit address bus, so 512 memory locations) and the new value to place

in that position (each position of this ROM is 32 bits), all in hexadecimal .

The charges ROM It allows you to change the ROM content that maps instructions. The ROM

is addressed with the present assembly instruction code field in the instruction register,

putting off the start address of the micro-routine which performs this instruction in the

Control ROM. This option is useful to add new instructions or modify the micro-program

existing instructions. The input file must be text, with one line per memory location. In

each line must contain the address of the location to change (this ROM has 64 positions)

and the new value to place in that position (each position of this ROM has 9 bits), all in

hexadecimal.

Loads ROM B It allows you to change the ROM content that maps the addressing mode. The

ROM B is addressed using the addressing mode field assembly instructions present in

the instruction register, according to Figure 12.8 of the book by placing the exit address

in the sub-micro-routine in control ROM reads / writes operands according to this mode.

This option is useful to add or modify existing addressing modes. The input file must be

text, with one line per memory location. In

each line must contain the address of the location to change (this ROM has 16 positions)

and the new value to place in that position (each position of this ROM has 9 bits), all in

hexadecimal.

Leaves program exit, losing all information about the simulation context.

• Definitions: menu with configuration options of the simulator itself.

sets IVAD which defines the interrupt vectors associated with each of the switching buttons.

It also allows individually disable each stop button. The changes only take effect after

pressing in Guarda.

Memory Zone which allows to change the range of memory locations in the memory

displaying section (see Section 4.2.4).

Program area It allows you to change the number of memory locations displaying the

disassembled program section (see Section 4.2.5).

this menu are the same as those described in Section 4.2.6. The reason

doubling is that sometimes can be useful to have this fixed menu in a small, independent

window.

• Debug: this menu are a set of options that make it easy to debug programs.

Breakpoints This option lists the breakpoints (or breakpoints, address where the execution of

the program stops) that are set. To delete all just stop points click Delete All. To delete

a particular stopping point should click on it (either in this window either in the program)

and then click Delete. To set a new stopping point in a given line of code, you must select

the line in the program window and then click Add.

20

Write Register It allows to directly change the contents of registers. The value should be in

hexadecimal.

Write Memory It allows to change a memory location directly. The values of the address and

content must be in hexadecimal. Important: If you change the contents of a position

corresponding to the code, the program window will not be updated (there is a new

disassemble the program), and therefore there will be some inconsistency.

menu has options to enable / disable windows or extra information on simu-

View Control extends or reduces the simulator interface, allowing the internal information

display control unit. This mode of operation is described in Section 4.4.

see ROMs creates or eliminates a window that shows the contents of each memory position

of the three ROM of the control unit: mapping ROM A, B and mapping ROM Control

ROM.

window Text creates or eliminates the input window and text output. As described in Section

4.6.1, the inputs / outputs for this window are mapped to FFFCh addresses FFFFh.

Therefore, reading and writing to this range of addresses this control device as described

in this section.

window board creates or eliminates the input and output window that emulates the DIO5

the Digilent board with:

– an LCD display with 16 rows and two columns;

– 4 7-segment displays;

– 16 individual LEDs;

– 8 switches;

– 15 push buttons (in DIO5 board, there is a 16 button that is not being used with P3).

The control addresses to these devices are described in Section 4.6.2.

4.2.2 Instruction counters and Clock Cycles

Under the menu, there is a section that shows the number of instructions and the number of clock

cycles that have elapsed since the last reset is sent to the processor.

4.2.3 records

The section immediately below on the left shows the current value of each register of the processing

unit. The general purpose registers are shown (R0 to R7), the program counter PC (program counter)

and the pointer to the top of the stack SP (stack pointer). All values are in hexadecimal with 16 bits.

Also they listed the status bits (flags) of the system (whose value is of course

0 or 1): The, excess or overflow; C, carry or transport; N, or negative sign; Z, zero; and E, enable

interrupt.

21

4.2.4 Contents of memory

This section shows the contents of various memory locations. For efficiency reasons, it is not

possible to have access to all positions of both memory. Thus, it was decided to give access to two

different memory zones, which translates into the middle part of this section. Initially, the top points

to the memory area where the data and are typically the low part to the area of the stack and

interrupt table with the values:

 start end positions

top: 8000h 81FFh 512 bottom: 512 FD00h FEFFh At

the Settings menu, you can set the start address

and the number of memory locations to be

displayed in each of these areas. An increase in the

number of positions the view makes the run more

slowly simulator.

In each row 8 are brought into consecutive memory locations. The address of the first of these

positions is the first line number. The following 8 values are the contents of these positions. Again,

all values are in hexadecimal and are 16 bits. At the end of each line are the 8 characters with ASCII

codes of this line memory locations. If the value does not correspond to the ASCII code of an alpha-

numeric character is used the character '.'.

4.2.5 disassembled program

In the section below on the left shows the disassembled program. Whenever a new program is

loaded into the simulator, it made its disassembly. This process is to interpret the binary values of

the input file and print the assembly instruction that corresponds to them. Note that do not have

access to the tags used in the original assembly file, then all the values are numeric.

The dark bar indicates the next instruction to be executed. However, this can be placed in any

instruction by clicking on it. This allows it to be placed there a point to stop by Breakpoints option

Debug menu. The instructions with stop points are preceded in the code with the sign '' '. To remove

a stopping point you can click on this statement and make Clears the same option Debug menu.

When the program is running and stops at a given point stop, this is marked by the red color of

the selection bar.

4.2.6 Command Execution and Interruption

In the lower right corner are the commands that control program execution:

Instruction - execute a single assembly instruction.

Run - restart the program and run it indefinitely or until it stops at a stopping point. You can stop

the program at any time by clicking the Stop button.

restarts - resets the processor, placing all registers to 0, except the PC is loaded with the value of

the start address of the program.

To be continued - continues to program execution from the current instruction. This button

becomes a Stop button allowing the user to stop program execution at any time.

22

refreshes - updated the program window without stopping the execution, showing the contents of

memory and registers at the time it clicked this button.

4.3 debug

Typically, the tools available to assist in debugging an assembly program is very limited. The

functionality of these tools is replicated in p3sim simulator.

To test the functionality of a code section, one begins to put a stop point (as indicated above) at

the beginning of this section and give the command runs. After its stop, is executed step-by-step

program, checking whether the program flow is provided and if after each instruction registers,

memory status and bit positions have been changed as expected. If it does not, it is possible to have

to repeat this procedure to try to understand why it is that the program behavior is different than

expected.

Sometimes it is desirable to artificially create the conditions that want to test. To this can be

loaded registers / memory location with the values required for the test is intended.

Basically, these are the following procedures. Therefore, unless you have a very refined intuition

for debugging assembly programs that give a very good idea where the error may be emerging, it is

strongly recommended that the test of the programs is made module by module. Only after the

modules have been tested separately under typical conditions and have enough confidence in its

proper functioning is that it should start to join them and test them together.

4.4 Control Unit

The simulator makes p3sim simulation at the level of micro-code. To have access to inside

information of the control unit (therefore information that is not available within the assembly

programming) must select the View Control option from the View menu. After this selection the

interface is extended, getting as shown in Figure 2 .

In particular, we have another section in the interface window with the internal of the control

unit records and another button (Clock) in the execution of commands section.

4.4.1 RegistrationIt is internal to control unit

The section appears between registers and memory contents shows values of internal registers to

the control unit. They are records that are not seen by the programmer, but are used by the micro-

programs of the processor's instructions. The records are shown:

R8-R13 - 6 set of 16-bit registers for general purpose micro-

programs. Of these, the last three have special meaning by the

way are used in the structure of the micro-processor programs:

R11: Also called SD (data source) because the phase operand

instruction fetch is loaded with the value of the source

operand (source).

R12: Also called EA (effective address) because the phase

operand instruction fetch is loaded with the memory address

where they eventually will get one of the operands (one that

is not used in recording mode), and the writeback stage where

it holds the result if the destination operand is in memory.

23

Figure 2: Extended simulator interface with the control information.

R13: Also called RD (result data) because the phase operand

instruction fetch is loaded with the destination operand

and the value is the value of the result, to be used in the

writeback stage.

R14 - indeed, this is the pointer register of the stack, SP, ie SP

register is in the register bank and corresponds to R14.

R15 - in the same way, this is the program counter register PC.

CAR - control address register contains the address of the Control

ROM with micro-statement to execute in the next clock cycle. 9-

bit register.

SBR - subroutine branch register, saves the return address when

executing a call to a subroutine within a micro-program. 9-bit

register.

uI - micro-instruction, micro-instruction to be executed in the next

clock cycle. The microinstruction is 32 bits.

IR - instruction register contains the assembly instruction that is

being executed. 16-bit register.

24

INT - interrupt indicates whether or not an interrupt is pending,

taking the values 0 or 1 respectively.
z c - bit zero state and transport from the ALU, invisible to the

programmer, and therefore only useful in micro-programming. They

are updated every clock cycles, unlike the bit state assembly

whose updated or not is controlled by the micro-program. Take

the values 0 or 1.

4.4.2 Clock button

This extra button allows you to run only one clock cycle at a time. Its usefulness is to follow the

operation of a micro-program instruction micro-micro-instruction. To stop the execution of the

current assembly instruction can use the instruction button, which runs the clock cycles needed to

get back to the beginning of the fetch cycle.

Note that the PC can stay briefly in an invalid area when you press the clock button, which is

indicated by the message "The location pointed to by the PC does not contain a valid instruction."

This is that, in the instructions occupy two memory locations, the PC can briefly get to point to the

second memory location of that statement, which does not correspond to an assembly instruction.

Once read this memory location, the PC is incremented again, returning to a valid position.

4.5 Micro-Program

The p3sim simulator is designed to allow the assembly to modify the operating instructions of the

processor and even introduce new directions. This process involves modifying certain memory

locations of the processor ROM: Control ROM and mapping ROMs, A and B. The content of these

ROMs is presented in Appendix B.

The change of an instruction can in principle be done by modifying certain positions of the

control ROM. For this, you have to analyze the instruction of micro-assembly program to change

and identify the micro-program positions that should be changed. Just then create a text file with

one line for each micro-instruction to change. In each line should contain the address of the ROM

to control the change followed by the desired value for this position, all values in hexadecimal. This

file must then be loaded using the Load ROM option from the File menu Control. The format used

for the micro-instructions are presented in Appendix B.

To add an instruction, you must:

1. arranging an instruction code (opcode) only.

2. develop micro-program for this statement.

3. arranging a free space in the control ROM in which this micro-program will be placed. In the

case of p3sim, free positions are from the address 112h, inclusive.

4. loading the micro-program, as described in the previous paragraph.

5. modifying the mapping ROM by putting the address corresponding to the new instruction

code of the control ROM address added where the micro-program using the same procedure

that used for changing the control ROM.

25

The contents of the ROMs of the processor can be confirmed by selecting the View option ROMs

from the View menu.

Figure 3: Text interface window with 24 rows and 80 columns.

Clearance of micro-program can be done by following step-by-step (which at this level is

equivalent to clock cycle-to-cycle clock) its execution with the Clock button and checking the flow

and the changes that the micro -program causes the different registers.

4.6 Device Input and Output

The simulator provides a set of input and output devices through two windows that can be opened

via the View menu. Each of these devices can be accessed by one or more ports. As the IO address

space mapped in the memory address space, each port will match a memory address. These ports

can be reading, writing or reading and writing. Written to read-only ports are ignored. Reads return

ports writing every bit to 1, that is, FFFFh.

4.6.1 window Text

This window, shown in Figure 3, allows an interface-level text, allowing you to read characters from

the keyboard and write characters to the display. To access this device are reserved four ports:

Port Reading, FFFFh address: a reading from this port returns the ASCII code of the character

corresponding to the last key pressed on the text window. Therefore, if a key is pressed before

the previous key reading makes this lost. You can test whether there is any key to read

through the state port. A reading of this port without having been a key pressed returns the

value 0.

write port, FFFEh address: port that allows you to write a certain character in the text window. The

character with the ASCII code equal to the value written to this port is echoed

26

Figure 4: Window interface that emulates the card input / output.

in the window. This window keeps internally a cursor where this character is written.

Whenever you make a written, this moves cursor. It is possible to position itself at any point

the cursor window through the control port.

State port, FFFDh address: port that lets you test whether or not any character to read in the text

window. If there is not a reading of this port returns 0. If however a key has been pressed,

this port returns 1. Once this key is read through the read port, the port passes back to 0

again.

port control, FFFCh address: port that lets you position the cursor in the text window, indicating

where the next character will be written. To make possible this placement has to be done

with your power, achieved through FFFFh value written to this port1. Once initialized, the

cursor can be positioned in a given row and column writing a value to this port in the 8 most

significant bits indicate the line (between 0 and 23) and the 8 least significant column

(between 1 and

80):

4.6.2 window board

Figure 4 shows the window interface that emulates the DIO5 board Digilent used in practical
classes of the course of Bachelor of Computer Architecture and Computer Engineering IST
Computers. This provides the following devices are indicated:

• 8 switches, FFF9h address: a reading of this address allows you to read simultaneously the

whole state of the 8 switches. Each bit corresponds to a switch, right switch corresponding to

the least significant bit and the eighth bit from the left (the eight most significant bits always

come to 0). A switch puts down their bit to 0 and up to 1.

1 A side effect of this is to clean boot the entire window contents.

27

• LEDs, FFF8h address: set of 16 LEDs whose individual state, on or off, is defined by a writing

to this port. Each LED corresponds one bit of the data word, the right LED being controlled by

the least significant bit and the remaining LEDs for each of the remaining bits in order.

• display 7-segment, addresses FFF0, FFF1h, FFF2h and FFF3h: each of these ports controls,

from right to left, a set of seven LEDs that form a display. The four least significant bits of the

value written in the port determines the hexadecimal character (0 to F) that appears on its

display.

• display LCD, FFF4h and FFF5h addresses: display with 16 columns and 2 lines of text. A write

to the port FFF5h echoes the character corresponding extended ASCII code to 8 bits of the

written value. The FFF4h port is a control port, wherein the different active bit trigger

different operations:

 bit Action

Writing a character does not change the cursor position, then between each writing is

necessary to update the position of this.

• 15 pushbuttons: they are not memory mapped by clicking one of these buttons is generated

an interruption in the program with the corresponding interrupt vector. You can disable these

buttons by selecting the Define IVAD option in the Settings menu and click on the appropriate

check box. It is also here that you can change the vector associated with each of these 15

interrupt buttons that by default corresponds to the button index.

4.6.3 timer

The simulator provides p3sim, still in accordance with DIO5 plate, a timer device for defining

intervals of real time. The timer is controlled by two ports:

• counting units FFF6h address: written to this address defines the number of counter units,

each with a duration of 100ms. For example, to have a range of 1s, it should be written to

address the value 10. A reading of this address allows to get the current count value;

• port control FFF7h address: this allows the port to initiate or stop writing count by respectively

a 1 or a 0 in the least significant bit (the remaining bits are ignored). This indicates a read

address, the least significant bit of the state timer, counting on or off.

15 turns on or off the LCD;

5 clean the LCD display;

4 position on the line the cursor 0 or 1 (which indicates the next position to be

written);

3-0 positioning the cursor in the specified column;

28

The normal use of this device is to write the port FFF6h the number of periods corresponding to the

required 100ms interval, followed by a value written in the port 1 FFF7h. It should be associated

with the interrupt vector routine 15 which will treat the indication of the end of this interval.

4.6.4 Mask Interruptions

A final output port in FFFAh address is associated with the mask interrupts. This mask enables or

disables each of the first 16 interrupt vectors individually defined by writing a bit pattern of 1 and

0, respectively. For example, just to enable the welcome interruption timer, should be written to

this address the value 8000h. A reading of this address indicates the current status of the mask.

Table 2 summarizes the set of input / output p3sim simulator.

29

Address Device description Action
FFF0h Display 7 segments 0 It allows you to write the 7-

segment display right away.

Only four are considered the

least significant bits written in

the address.

writing

FFF1h Display 7 segments 1 Ditto for the display to the left

of the former.

writing

FFF2h Display 7 segments 2 Ditto for the display to the left

of the former.

writing

FFF3h Display 7 segments 3 Ditto for the display to the left

of the former.

writing

FFF4h LCD It allows you to send control

signals to the LCD.

writing

FFF5h LCD It lets you write a character on

the LCD whose extended ASCII

code was written in the

address.

writing

FFF6h timer counter value associated with

the timer.

Read / Write

FFF7h timer Start or stop the timer. Read / Write

FFF8h LEDs Allows light the LEDs

corresponding to the value in

bináio that is written in the

address. The right LED

corresponding to the least

significant bit.

writing

FFF9h switches Lets you read, the 8 least

significant bits, the value set by

the position of the switches.

The right switch corresponds to

the least significant bit.

Reading

FFFAh Mask interruptions It allows you to set the enabled

interrupt vectors, one for each

mask bit.

Read / Write

FFFCh text window It allows you to place the cursor

in a given window position.

writing

FFFDh text window It allows you to test whether

there was any primida key.

Reading

FFFEh text window It lets you write a character in

the window.

writing

FFFFh text window Reads the last primida key. writing

30

Table 2: Summary of input and output devices.

THE Formats Instructions Assembly

Instructions 0 operands

NOP, ENI, DSI, STC, CLC, CMC, RET and RTI

Instructions 0 with constant operands

RETN and INT

opcode Constant

1 operating instructions

BUSINESS, INC, DEC, COM, PUSH and POP

opcode

M Reg_modo

 W

Instructions 1 operating with constant

SHR, SHL, SHRA, sHLA, ROR, ROL, RORC,

ROLC

opcode # positions M Reg_modo

 W

Instructions 2 operands

CMP ADD, ADDC, SUB, SubB, MUL, DIV, TEST, AND, OR, XOR, MOV,

MVBL, and MVBH XCH

opcode

6 bit
16 bit

6 bit
16 bit

10 bit

6 bit 2 bit 4 bit
16 bit

6 bit 2 bit 4 bit
16 bit

4 bit

6 bit 2 bit 4 bit 1 bit 3 bit
16 bit

31

opcode s Reg_reg M Reg_modo

 W

absolute unconditional jump instructions

JMP, CALL

opcode

M Reg_modo

 W

conditional absolute jump instructions

JMP .cond, CALL. cond

opcode Condition M Reg_modo

 W

unconditional relative jump instruction

BR

unconditional relative jump instruction

BR. cond

opcode Condition displacement

jump condition coding

Condition mnemonic Code

Zero Z 0000

not zero NZ 0001

Transport Ç 0010

Do not carry NC 0011

Negative N 0100

not negative NN 0101

Excess O 0110

Do not over AT THE 0111

6 bit 2 bit 4 bit
16 bit

6 bit 2 bit 4 bit
16 bit

4 bit

opcode

6 bit
16 bit

6 bit

displacement

6 bit 4 bit
16 bit

6 bit

32

Positive P 1000

not positive NP 1001

Interruption I 1010

Do not interrupt NI 1011

Operation Codes

mnemonic Code mnemonic Code
NOP 000000 CMP 100000

ENI 000001 ADD 100001
DSI 000010 ADDC 100010
STC 000011 SUB 100011
CLC 000100 Subb 100100
CMC 000101 MUL 100101
RET 000110 DIV 100110
RTI 000111 TEST 100111
INT 001000 AND 101000
RETN 001001 OR 101001
BUSINESS 010000 XOR 101010
INC 010

001
MOV 101011

DEC 010010 MVBH 101100
WITH 010

011
MVBL 101101

PUSH 010100 XCH 101110
POP 010101 JMP 110000
SHR 011000 JMP.cond 110001
SHL 011

001
CALL 110010

SHRA 011

010
CALL.cond 110011

sHLA 011011 BR 111000
ROR 011

100
BR.cond 111001

ROL 011

101

RORC 011110

ROLC 011111

Addressing Modes

M addressing Operation

00 for registration p = RX

01 For indirect register M OP =

[RX]

10 Immediate p = W

11 Indexed, direct, relative or based M OP = [RX

+ W]

Selection of operating with addressing mode

33

s operating

0 Destiny

1 Source

34

B Content of Control ROMs

In appendix, the list includes the contents of the ROM of the processor P3 Control Unit. These ROMs

can be modified as described in Section 4.5 in order to add an assembler instruction or change the

behavior of an existing one.

ROM B

Address Content Mode

0 - 0000 0x00a F1R0

1 - 0001 0x00b F1RI0

2 - 0010 0x00d F1IM0

3 - 0011 0x00f F1IN0 4-0100 0x02d WBR0

5 - 0101 0x02f WBM0

6 - 0110 0x02d WBR0

7 - 0111 0x02f WBM0

8 - 1000 0x013 F2R0

9 - 1001 0x017 F2RI0 10-1010 0x01d F2IM0 11-1011 0x023

 F2IN0 12-1100 0x015 F2RS0

13-1101 0x01a F2RIS0 14-1110

 0x020 F2IMS0

15-1111 0x028 F2INS0

 The ROM 62-111110 0x0 Free
 63-111111 0x0 Free

 Address Content Instruction

0 - 000000 0x032

 NOP
1 - 000001 0x033

 ENI0
2 - 000010 0x037

 DSI0
3 - 000011 0x03b

 STC0
4 - 000100 0x03e

 CLC0
5 - 000101 0x040

 CMC0
6 - 000110 0x044

 RET0
7 - 000111 0x047

 RTI0
8 - 001000 0x04c

 INT0

35

9 - 001001 0x055 RETN0 10-

001010 Free 0x0 11-001011 Free

0x0 12-001100 Free 0x0 13-

001101 Free 0x0 14-001110 0x0

Free
15-001111 0x0 Free 16-010000

0x05b NEG0
17 - 010 001 0x05e INC0
18 - 010010 0x060 DEC0
19 - 010 011 0x062 COM0
20 - 010100 0x064 PUSH0
21 - 010101 0x067 POP0
22 - 010110 0x0 Free
23 - 010 111 0x0 Free 24-011000

0x06a SHR0
25 - 011 001 0x071 SHL0
26 - 011 010 0x078 SHRA0
27 - 011,011 0x07f SHLA0 28-

011100 0x08c ROR0
29 - 011 101 0x093 ROL0
30 - 011110 0x09a RORC0
31 - 011111 0x0a1 ROLC0 32-

100000 0x0c2 CMP0
33 - 100001 0x0b4 ADD0
34 - 100010 0x0b6 ADDC0
35 - 100011 0x0b8 SUB0
36 - 100100 0x0ba SUBB0 37-

100101 0x0cf MUL0
38 - 100110 0x0dd DIV0
39 - 100111 0x0c4 test0
40 - 101000 0x0bc AND0
41 - 101001 0x0be OR 0
42 - 101010 0x0c0 XOR0
43 - 101011 0x0a8 MOV0
44 - 101100 0x0af MVBH0
45 - 101101 0x0aa MVBL0
46 - 101110 0x0ca XCH0
47 - 101111 0x0 Free
48 - 110000 0x102 JMP.C0

49-110001 0x105 JMP
50 - 110010 0x109 CALL.C0
51 - 110011 0X10D CALL
52 - 110100 0x0 Free 53-

110101 0x0 Free 54-

110110 0x0 Free
55-110111 0x0 Free 56-111000

0x0f9 BR.C0 57-111001 0x0f8 BR
58-111010 0x0 Free 59-

111011 0x0 Free 60-111100

 0x0 Free 61-111101 0x0

 Free

ROM Control

0 M5
s
R
1

s
R
2

I
THE
K FM

CALU
M
THE

M
B

M
2

M
R
B RB

W
M

W
R MD

M
THE
D RAD

0 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 9

36

F

1 M5
s
R
1

s
R
2

L
s MCOND

Ç
Ç

L
I

L
F CONST /

NA
W
R MD

M
THE
D RAD

Figure 5: Format of micro-instructions.

Address Content Tag Operation
000 000h 000000000b 0x8060001f IF0 IR <-M [PC]

001 001h 000000001b 0x400a009f IF1 PC <-PC + 1,CAR <-Rome

[PO]
002 002h 000000010b 0x81c000d8 IH0 R8 <-Re ! Eint? CAR

<-IF0

003 003h 000000011b 0x0008319e ih1 M [SP] <- R8,SP <-

SP-1

004 004h 000000100b 0x04083f9e H2RA M [SP] <- PC,SP <SP-

1,
IAK

<-1
005 005h 000000101b 0x000000b9 IH3 R9 <-INTADDR

006 006h 000000110b 0x804200f8 IH4 R8 <-0200h

007 007h 000000111b 0x00023099 IH5 R9 <-R8 -R9

008 008h 000001000b 0x000132bf IH6 PC <-M [R9]

009 009H 000001001b 0x80100010 IH7 RE <-R 0,CAR <-IF0

010 00ah 000001010b 0x2031009d F1R0 RD <R [IR1]CAR <-SBR

011 00bh 000001011b 0x0031009c F1RI0 EA <R [IR1]

012 00ch 000001100b 0x200138bd F1RI1 RD <-M [EA]CAR <-SBR

013 00dh 000001101b 0x00013ebd F1IM0 RD <-M [PC]

014 00eh 000001110b 0x200a009f F1IM1 PC <-PC + 1,CAR <-

SBR

015 00fh 000001111b 0x00013ebc F1IN0 EA <-M [PC]

016 010h 000010000b 0x000a009f F1IN1 PC <-PC + 1

017 011h 000010001b 0x0000009c F1IN2 EA <-EA + R [IR1]

018 012h 000010010b 0x200138bd F1IN3 RD <-M

[EA]
CAR <-SBR

019 013h 000010011b 0x0031009d F2R0 RD <R

[IR1]

020 014h 000010100b 0x2031409b F2R1 SD <R

[IR2]
CAR <-

SBR

021 015h 000010101b 0x0031009b F2RS0 SD <R

[IR1]

022 016h 000010110b 0x2031409d F2RS1 RD <R

[IR2]
CAR <-

SBR

023 017h 000010111b 0x0031009c F2RI0 EA <R

[IR1]

37

024 018h 000011000b 0x000138bd F2RI1 RD <-M

[EA]

025 019h 000011001b 0x2031409b F2RI2 SD <R

[IR2]
CAR <-

SBR

026 01ah 000011010b 0x0031009c F2RIS0 EA <R

[IR1]

027 01bh 000011011b 0x000138bb F2RIS1 SD <-M

[EA]

028 01ch 000011100b 0x2031409d F2RIS2 RD <R

[IR2]
CAR <-

SBR

029 01dh 000011101b 0x00013ebd F2IM0 RD <-M

[PC]

030 01eh 000011110b 0x000a009f F2IM1 PC <-PC +

1

031 01fh 000011111b 0x2031409b F2IM2 SD <R

[IR2]
CAR <-

SBR

032 020h 000100000b 0x00013ebb F2IMS0 SD <-M

[PC]

033 021h 000100001b 0x000a009f F2IMS1 PC <-PC +

1

034 022h 000100010b 0x2031409d F2IMS2 RD <R

[IR2]
CAR <-

SBR

035 023h 000100011b 0x00013ebc F2IN0 EA <-M

[PC]

036 024h 000100100b 0x000a009f F2IN1 PC <-PC +

1

037 025h 000100101b 0x0000009c F2IN2 EA <-EA +

R [IR1]

038 026h 000100110b 0x000138bd F2IN3 RD <-M

[EA]

039 027h 000100111b 0x2031409b F2IN4 SD <R

[IR2]
CAR <-

SBR

040 028h 000101000b 0x00013ebc F2INS0 EA <-M

[PC]

041 029h 000101001b 0x000a009f F2INS1 PC <-PC +

1

042 02ah 000101010b 0x0000009c F2INS2 EA <-EA +

R [IR1]

043 02BH 000101011b 0x000138bb F2INS3 SD <-M

[EA]

044 02ch 000101100b 0x2031409d F2INS4 RD <R

[IR2]
CAR <-

SBR

045 02dh 000101101b 0x00313a80 WBR0 R [WBR] <-

DR

046 02eh 000101110b 0x80000200 WBR1 CAR <-IH0

047 02fh 000101111b 0x83002d00 WBM0 S? CAR <-WBR0

 (mode
at

the
other)

048 030h 000110000b 0x00003b1c WBM1 M [AE] <- DR

049 031h 000110001b 0x80000200 WBM2 CAR <-IH0

050 032h 000110010b 0x80000200 NOP0 CAR <-IH0

051 033h 000110011b 0x804010f8 ENI0 R8 <-0010h

38

052 034h 000110100b 0x000000d9 ENI1 R9 <-RE

053 035h 000110101b 0x00143298 ENI2 R8 <-R8or R9

054 036h 000110110b 0x80100218 ENI3 RE <-R 8,CAR <-

IH0

055 037h 000110111b 0x80400ff8 DSI0 R8 <-000fh

056 038h 000111000b 0x000000d9 DSI1 R9 <-RE

057 039h 000111001b 0x00123298 DSI2 R8 <-R8and R9

058 03ah 000111010b 0x80100218 DSI3 RE <-R 8,CAR <-

IH0

059 03bh 000111011b 0x00112098 STC0 R8 <-notR0

060 03ch 000111100b 0x010a0018 STC1 R8 + 1 flag C

061 03dh 000111101b 0x80000200 STC2 CAR <-IH0

062 03eh 000111110b 0x01002010 CLC0 + R0 R0,flag C

063 03fh 000111111b 0x80000200 CLC1 CAR <-IH0

064 040h 001000000b 0x804004f8 CMC0 R8 <-0004

065 041h 001000001b 0x000000d9 CMC1 R9 <-RE

066 042h 001000010b 0x00163298 CMC2 R8 <-R8R9 EXOR

067 043h 001000011b 0x80100218 CMC3 RE <-R 8,CAR <-

IH0

068 044h 001000100b 0x000a009e RET0 SP <+ SP 1

069 045h 001000101b 0x00013cbf RET1 PC <-M [SP]

070 046h 001000110b 0x80000200 RET2 CAR <-IH0

071 047h 001000111b 0x000a009e RTI0 SP <+ SP 1

072 048h 001001000b 0x00013cbf RTI1 PC <-M [SP]

073 049h 001001001b 0x000a009e RTI2 SP <+ SP 1

074 04ah 001001010b 0x00013cb8 RTI3 R8 <-M [SP]

075 04bh 001001011b 0x80100218 RTI4 RE <-R 8,CAR <-

IH0

076 04ch 001001100b 0x000000D8 INT0 R8 <-RE

077 04dh 001001101b 0x0008319e INT1 M [SP] <- R8,SP <-

SP-1

078 04eh 001001110b 0x00083f9e INT2 M [SP] <- PC,SP <-

SP-1

079 04fh 001001111b 0x8040fff8 INT3 R8 <-00ffh

080 050h 001010000b 0x00128098 INT4 R8 <-IRand R8

39

081 051h 001010001b 0x804200f9 INT5 R9 <-0200h

082 052h 001010010b 0x00023298 INT6 R8 <-R8 -R9

083 053h 001010011b 0x000130bf INT7 PC <-M [R8]

084 054h 001010100b 0x80100010 INT8 RE <-R 0,CAR <-IF0

085 055h 001010101b 0x000a009e RETN0 SP <+ SP 1

086 056h 001010110b 0x00013cbf RETN1 PC <-M [SP]

087 057h 001010111b 0x8043fff8 RETN2 R8 <-03ffh

088 058h 001011000b 0x00128098 RETN3 R8 <-IRand R8

089 059h 001011001b 0x0000309e RETN4 SP <-SP R8 +

090 05ah 001011010b 0x80000200 RETN5 CAR <-IH0

091 05bh 001011011b 0xe40000f8 NEG0 R8 <-0,SBR <-car + 1,CAR <-

F1
092 05ch 001011100b 0x03c23a98 NEG1 R8 <-R8 RD,flags ZCNO
093 05dh 001011101b 0x7031309d NEG2 RD <-R8,CAR <WB
094 05eh 001011110b 0xe4000000 INC0 SBR <-car + 1,CAR <-F1
095 05fh 001011111b 0x73ca009d INC1 RD <+ -R 1, ZCNO flags, CAR

<WB
096 060h 001100000b 0xe4000000 DEC0 SBR <-car + 1,CAR <-F1
097 061h 001100001b 0x73c8009d DEC1 RD <--R 1, ZCNO flags, CAR

<WB
098 062h 001100010b 0xe4000000 COM0 SBR <-car + 1,CAR <-F1
099 063h 001100011b 0x7290009d COM1 RD <! - RD,ZN flags, CAR <WB
100 064h 001100100b 0xe4000000 PUSH0 SBR <-car + 1,CAR <-F1
101 065h 001100101b 0x00083b9e Push1 M [SP] <- RD,SP <-SP-1
102 066h 001100110b 0x80000200 PUSH2 CAR <-IH0
103 067h 001100111b 0xe4000000 POP0 SBR <-car + 1,CAR <-F1
104 068h 001101000b 0x000a009e POP1 SP <+ SP 1
105 069h 001101001b 0x70013cbd POP2 RD <-M [SP]CAR <WB
106 06ah 001101010b 0xe403c0f8 SHR0 R8 <-03c0h,SBR <-car + 1, CAR

<-F1
107 06bh 001101011b 0x00128098 SHR1 R8 <-R8and IR
108 06ch 001101100b 0x804040f9 SHR2 R9 <-0040h
109 06dh 001101101b 0x03a0009d SHR3 RD <-s -hRD flags ZCN
110 06eh 001101110b 0x00023298 SHR4 R8 <-R8 -R9
111 06fh 001101111b 0x80c06d00 SHR5 ! Z? CAR <-SHR3

112 070h 001110000b 0x70000000 SHR6 CAR <WB
113 071h 001110001b 0xe403c0f8 SHL0 R8 <-03c0h,SBR <-car + 1, CAR

<-F1
114 072h 001110010b 0x00128098 SHL1 R8 <-R8and IR
115 073h 001110011b 0x804040f9 SHL2 R9 <-0040h
116 074h 001110100b 0x03a2009d SHL3 RD <-shl RD flags ZCN
117 075h 001110101b 0x00023298 SHL4 R8 <-R8 -R9
118 076h 001110110b 0x80c07400 SHL5 ! Z? CAR <-SHL3
119 077h 001110111b 0x70000000 SHL6 CAR <WB
120 078h 001111000b 0xe403c0f8 SHRA0 R8 <-03c0h,SBR <-car + 1, CAR

<-F1
121 079h 001111001b 0x00128098 SHRA1 R8 <-R8and IR
122 07ah 001111010b 0x804040f9 SHRA2 R9 <-0040h
123 07bh 001111011b 0x03e4009d SHRA3 RD <-shraRD flags ZCNO
124 07ch 001111100b 0x00023298 SHRA4 R8 <-R8 -R9
125 07dh 001111101b 0x80c07b00 SHRA5 ! Z? CAR <-SHRA3
126 07eh 001111110b 0x70000000 SHRA6 CAR <WB

40

127 07fh 001111111b 0xe403c0f8 SHLA0 R8 <-03c0h,SBR <-car + 1, CAR

<-F1
128 080h 010000000b 0x00128098 SHLA1 R8 <-R8and IR
129 081h 010000001b 0x0031209a SHLA2 R10 <-R 0
130 082h 010000010b 0x03e6009d SHLA3 RD <-shlaRD flags ZCNO
131 083h 010000011b 0x000000d9 SHLA4 R9 <-RE

132 084h 010000100b 0x0014329a SHLA5 R 10 <R 10or R9

133 085h 010000101b 0x804040f9 SHLA6 R9 <-0040h

134 086h 010000110b 0x00023298 SHLA7 R8 <-R8 -R9

135 087h 010000111b 0x80c082d9 SHLA8 R9 <-Re ! Z? CAR <-

SHLA3

136 088h 010001000b 0x804001f8 SHLA9 R8 <-1

137 089h 010001001b 0x0012309a SHLA10 R 10 <R 10and R8

138 08ah 010001010b 0x0014329a SHLA11 R 10 <R 10or R9

139 08bh 010001011b 0xf010001a SHLA12 RE <R 10,CAR <WB

140 08ch 010001100b 0xe403c0f8 ROR0 R8 <-

03c0h,
SBR <-car +

1,
CAR

<-F1
141 08dh 010001101b 0x00128098 ROR1 R8 <-R8and GO

142 08eh 010001110b 0x804040f9 r OR2 R9 <-0040h

143 08fh 010001111b 0x03a8009d ROR3 RD <-ror

 RD,
flags ZCN

144 090h 010010000b 0x00023298 ROR4 R8 <-R8 -

R9

145 091h 010010001b 0x80c08f00 ROR5 ! Z? CAR

<-ROR3

146 092h 010010010b 0x70000000 r OR 6 CAR <WB

147 093h 010010011b 0xe403c0f8 ROL0 R8 <-

03c0h,
SBR <-car +

1,
CAR

<-F1
148 094h 010010100b 0x00128098 ROL1 R8 <-R8and GO

149 095h 010010101b 0x804040f9 ROL2 R9 <-0040h

150 096h 010010110b 0x03aa009d ROL3 RD <-rol

 RD,
flags ZCN

151 097h 010010111b 0x00023298 ROL4 R8 <-R8 -

R9

152 098h 010011000b 0x80c09600 ROL5 ! Z? CAR

<-ROL3

153 099h 010011001b 0x70000000 rol6 CAR <WB

154 09ah 010011010b 0xe403c0f8 RORC0 R8 <-

03c0h,
SBR <-car +

1,
CAR

<-F1
155 09bh 010011011b 0x00128098 RORC1 R8 <-R8and GO

156 09ch 010011100b 0x804040f9 RORC2 R9 <-0040h

157 09dh 010011101b 0x03ac009d RORC3 RD <-rorc RD flags ZCN

41

158 09eh 010011110b 0x00023298 RORC4 R8 <-R8 -R9

159 09fh 010011111b 0x80c09d00 RORC5 ! Z? CAR <-RORC3

160 0a0h 010100000b 0x70000000 RORC6 CAR <WB

161 0a1h 010100001b 0xe403c0f8 ROLC0 R8 <-03c0h,SBR <-car +

1,
CAR

<-F1
162 0a2h 010100010b 0x00128098 ROLC1 R8 <-R8and IR

163 0a3h 010100011b 0x804040f9 ROLC2 R9 <-0040h

164 0a4h 010100100b 0x03ae009d ROLC3 RD <-rolc RD flags ZCN

165 0a5h 010100101b 0x00023298 ROLC4 R8 <-R8 -R9

166 0a6h 010100110b 0x80c0a400 ROLC5 ! Z? CAR <-ROLC3

167 0a7h 010100111b 0x70000000 ROLC6 CAR <WB

168 0a8h 010101000b 0xec000000 MOV0 SBR <-car + 1,CAR <-F2

169 0a9h 010101001b 0x7031369d MOV1 RD <-SD,CAR <WB

170 0aah 010101010b 0xec00fff8 MVBL0 R8 <-00ffh,SBR <-car +

1,
CAR

<-F2
171 0abh 010101011b 0x00113099 MVBL1 R9 <! - R8

172 0ach 010101100b 0x0012329d MVBL2 RD <-RDand R9

173 0adh 010101101b 0x00123698 MVBL3 R8 <-R8and SD

174 0aeh 010101110b 0x7014309d MVBL4 RD <-RDor R8, CAR <WB

175 0afh 010101111b 0xec00fff8 MVBH0 R8 <-00ffh,SBR <-car +

1,
CAR

<-F2
176 0b0h 010110000b 0x00113099 MVBH1 R9 <! - R8

177 0b1h 010110001b 0x0012309d MVBH2 RD <-RDand R8

178 0b2h 010110010b 0x00123699 MVBH3 R9 <-R9

 and
SD

179 0b3h 010110011b 0x7014329d MVBH4 RD <-RD or R9, CAR <-WB
180 0b4h 010110100b 0xec000000 ADD0 SBR <-car

+ 1,
CAR <-F2

181 0b5h 010110101b 0x73c0369d ADD1 RD <+ SD

-R,
ZCNO flags, CAR <WB

182 0b6h 010110110b 0xec000000 ADDC0 SBR <-car

+ 1,
CAR <-F2

183 0b7h 010110111b 0x73c4369d ADDC1 RD <SD + C

+ -R,
ZCNO flags, CAR <WB

184 0b8h 010111000b 0xec000000 SUB0 SBR <-car

+ 1,
CAR <-F2

185 0b9h 010111001b 0x73c2369d SUB1 RD <-RD-

SD,
ZCNO flags, CAR <WB

186 0bah 010111010b 0xec000000 SUBB0 SBR <-car

+ 1,
CAR <-F2

187 0bbh 010111011b 0x73c6369d SUBB1 RD <-RD-

SD-C
ZCNO flags, CAR <WB

42

188 0bch 010111100b 0xec000000 AND0 SBR <-car

+ 1,
CAR <-F2

189 0bdh 010111101b 0x7292369d AND1 RD <-RD

 and
SD ZN flags, CAR <-WB

190 0beh 010111110b 0xec000000 OR 0 SBR <-car

+ 1,
CAR <-F2

191 0bfh 010111111b 0x7294369d OR1 RD <-RD or SD ZN flags, CAR <-WB
192 0c0h 011000000b 0xec000000 XOR0 SBR <-car

+ 1,
CAR <-F2

193 0c1h 011000001b 0x7296369d XOR1 RD <-RD

 xor
SD ZN flags, CAR <-WB

194 0c2h 011000010b 0xec000000 CMP0 SBR <-car

+ 1,
CAR <-F2

195 0c3h 011000011b 0x73c2361d CMP1 RD <-RD-

SD,
ZCNO flags, CAR <WB

196 0c4h 011000100b 0xec000000 test0 SBR <-car

+ 1,
CAR <-F2

197 0c5h 011000101b 0x7292361d TEST1 RD <-RD

 and
SD ZN flags, CAR <-WB

198 0C6h 011000110b 0x8340c900 WSD0 ! S! CAR

<-WSD3
(DR mode on)

199 0c7h 011000111b 0x8240c900 WSD1 ! M0? CAR <-WSD3(REG mode or

IMM)
200 0c8h 011001000b 0x7000371c WSD2 M [AE] <- SD,CAR <WB (MEM mode)
201 0c9h 011001001b 0x70317680 WSD3 R [WBR!] <- SD,CAR <WB(MODE REG)
202 0cah 011001010b 0xec000000 XCH0 SBR <-car + 1,CAR <-F2
203 0cbh 011001011b 0x00313a98 XCH1 R8 <-RD
204 0cch 011001100b 0x0031369d XCH2 RD <-SD
205 0cdh 011001101b 0x0031309b XCH3 SD <-R8
206 0ceh 011001110b 0x8000c600 XCH4 CAR <-WSD0
207 0cfh 011001111b 0xec0010f8 MUL0 R8 <-16SBR <-car + 1,CAR <-F2
208 0d0h 011010000b 0x000000DA MUL1 R10 <-RE
209 0d1h 011010001b 0x0013b09a MUL2 R 10 <R 10and R8 (Flag E)
210 0d2h 011010010b 0x00313a99 MUL3 R9 <-RD
211 0d3h 011010011b 0x01f1209d MUL4 RD <-R 0,flags (CNO clearflags)
212 0d4h 011010100b 0x002c009b MUL5 SD <-rorcSD

213 0d5h 011010101b 0x8150d71a MUL6 RE <R 10,! C? CAR <-MUL8

214 0d6h 011010110b 0x0100329d MUL7 RD <+ -R R 9,

 flag C

215 0d7h 011010111b 0x012c009d MUL8 RD <-rorc RD flag Ç

216 0d8h 011011000b 0x00080098 MUL9 R8 <-R8-1

217 0d9h 011011001b 0x80c0d400 MUL10 ! Z? CAR <-MUL5

218 0dah 011011010b 0x012c009b MUL11 SD <-rorc SD flag C (C =
0)

219 0dbh 011011011b 0x0200361d MUL12 RD + SDZ flag

220 0dch 011011100b 0x8000c600 MUL13 CAR <-WSD0

221 0ddh 011011101b 0xec0000d8 DIV0 R8 <-Re SBR <-car

+ 1,
CAR <-F2

222 0deh 011011110b 0x0000201b div1 SD <R0 + -SD

223 0dfh 011011111b 0x80c0e300 DIV2 ! Z? CAR <-DIV6

224 0e0h 011100000b 0x804001f9 DIV3 R9 <-0001 (division by 0!)
225 0e1h 011100001b 0x00143298 DIV4 R8 <-R8or R9

43

226 0e2h 011100010b 0x80100218 DIV5 RE <-R 8,CAR <-

IH0
 (The

<-1)
227 0e3h 011100011b 0x01c12099 DIV6 R9 <+ R0 -R 0,

 flags
CNO (clear flag)

228 0e4h 011100100b 0x0002361d DIV7 RD-SD

229 0e5h 011100101b 0x8140f500 DIV8 ! C? CAR <-DIV24 (Result =

0)
230 0e6h 011100110b 0x00312098 DIV9 R8 <-R 0

231 0e7h 011100111b 0x000a0098 DIV10 R8 <-R8 + 1

232 0e8h 011101000b 0x0122009b DIV11 SD <-shlSD flag Ç

233 0e9h 011101001b 0x8100ec00 DIV12 c? CAR <-DIV15

234 0eah 011101010b 0x0002361d DIV13 RD-SD

235 0ebh 011101011b 0x8100e700 DIV14 c? CAR <-DIV10

236 0ech 011101100b 0x002c009b DIV15 SD <-rorcSD

237 0edh 011101101b 0x0102369d DIV16 RD <-RD-SD,flag C

238 0eeh 011101110b 0x8100f100 DIV17 c? CAR <-DIV20

239 0efh 011101111b 0x0000369d DIV18 RD <+ SD -R (<0: Reset)
240 0f0h 011110000b 0x01300010 DIV19 R0, flag C (C <-0)
241 0f1h 011110001b 0x002e0099 DIV20 R9 <-rolcR9

242 0f2h 011110010b 0x0020009b DIV21 SD <-s -h SD

243 0f3h 011110011b 0x00080098 DIV22 R8 <-R8-1

244 0f4h 011110100b 0x80c0ed00 DIV23 ! Z? CAR <-DIV16

245 0f5h 011110101b 0x00313a9b DIV24 SD <-RD

246 0f6h 011110110b 0x0331329d DIV25 RD <-R9,flags ZC

247 0f7h 011110111b 0x8000c600 DIV26 CAR <-WSD0

248 0f8h 011111000b 0x83c00200 BR.C0 ! COND? CAR <-IH0

249 0f9h 011111001b 0x80403ff8 BR0 R8 <-003fh

250 0fah 011111010b 0x0013b099 BR1 R9 <-R8and RI

251 0fbh 011111011b 0x804020fa BR2 R10 <-0020h (test of signal)

252 0fch 011111100b 0x0012329a BR3 R 10 <R 10and R9

253 0fdh 011111101b 0x80810000 BR4 z? CAR <-BR7

254 0feh 011111110b 0x00100098 BR5 R8 <-notR8

44

255 0FFh 011111111b 0x00143099 BR6 R9 <-R9or R8

256 100h 100000000b 0x0000329f BR7 PC <-PC + R9

257 101h 100000001b 0x80000200 BR8 CAR <-IH0

258 102h 100000010b 0xe4000000 JMP0 SBR <-car + 1,CAR <-F1

259 103h 100000011b 0x00313a9f JMP1 PC <-RD

260 104h 100000100b 0x80000200 JMP2 CAR <-IH0

261 105h 100000101b 0xe4000000 JMP.C0 SBR <-car + 1,CAR <-F1

262 106h 100000110b 0x83c00200 JMP.C1 ! COND? CAR <-IH0

263 107h 100000111b 0x00313a9f JMP.C2 PC <-RD

264 108h 100001000b 0x80000200 JMP.C3 CAR <-IH0

265 109h 100001001b 0xe4000000 CALL0 SBR <-car + 1,CAR <-F1

266 10ah 100001010b 0x00083f9e call1 M [SP] <- PC,SP <-SP-1

267 10bh 100001011b 0x00313a9f Call2 PC <-RD

268 10CH 100001100b 0x80000200 CALL3 CAR <-IH0

269 10dh 100001101b 0xe4000000 CALL.C0 SBR <-car + 1,CAR <-F1

270 10eh 100001110b 0x83c00200 CALL.C1 ! COND? CAR <-IH0

271 10fh 100001111b 0x00083f9e CALL.C2 M [SP] <- PC,SP <-SP-1

272 110h 100010000b 0x00313a9f CALL.C3 PC <-RD

273 111H 100010001b 0x80000200 CALL.C4 CAR <-IH0

(free of Address 274 to 511)

