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Static Relocation
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Dynamic Relocation — relocation at run-time
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Multiple Programs Without Memory Abstraction

* |[lustration of the relocation problem.
Two Programs
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Dynamic relocation using a relocation register
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Base and Limit Registers
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Main Points of Address Translation

* Address Translation Concept
* How do we convert a virtual address to a physical address?

* Flexible Address Translation
e Base and Limit [limitations?]
* Paging
* Segmentation
* Multilevel translation

* Efficient Address Translation: what we need for good performance
* Translation Lookaside Buffers (TLB)
 Virtually and Physically Addressed Caches



Address Translation Concept
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Hardware Support for Relocation

and Limit Registers
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* Multiple-partition allocation

* Hole — block of available memory; holes of various size are
scattered throughout memory

* When a process arrives, it is allocated memory from a hole
large enough to accommodate it

* Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

OR) OR) 0OS OS
process 5 process 5 process 5 process 5
process 9 process 9
process 8 |:> |:> |:> process 10
process 2 process 2 process 2 process 2

Main memory usually split into two partitions:
Resident operating system, usually held in low memory with interrupt
vector (& ISRs)
User processes then held in high memory

Contiguous Allocation



* Basic Machine Operation

loop

w:= M[pc];

oc:= Opcode(w);

adr:= Address(w);

pc:=pcC +1;

case oc of
1: reg: = reg +M[adr];
2: M[adr]:=reg;
3: pc: = adr;

end
end

M[0..n] mMain memory
reg general register
pc  Program counter

Address (w) gets operand
address of instruction w

Opcode (w) gets opcode part
of instruction w

oc =1 Add
oc = 2 store

oc =3 branch

Introduction to Dynamic Relocation
Virtual = Physical Addresses



 Machine Operation Modified for Dynamic Relocation

With dynamic Relocation Hardware:
addresses pc and adr are treated as

loop relocatable (virtual) addresses and
w:= M[NL_map(pc)]; mapped into main storage.
oc:= Opcode(w);
adr:= Address(w); Generalized Mapping function:
pc:=pc +1; NL_MAP (name - location map)
case oc of NL_Map{relocatable(virtual) addresses}
1: reg: = reg +M[NL_map(adr)]; — {real storage addresses}
2: M[NL_map(adr)]:=reg;
3: pc: = adr; Using Simple Relocation/Limit mapping
end PC & Relocation Register (RR)/Limit R need
End to be part of PCB

Dynamic Relocation



Dynamic Linking
* Linking postponed until execution time

* Small piece of code, stub, used to locate the
appropriate memory-resident library routine

 Stub replaces itself with the address of the routine,
and executes the routine

* Operating system needed to check if routine is in
processes memory address

* Dynamic linking is particularly useful for libraries

 a table of valid entry points for the library functions is
kept by the compiler.

 When the program calls into the library, the program
indirects through the table

e System also known as shared libraries




Reducing memory use by dynamic linking

Reducing memory use by sharing

main p main p main p main p
CRp |—»||STUB f| call f call f call f
CRpis CRp ! CRp f CRp i
code RR CRq
CRq | main q main g
STUB f call f
Code reaches a call to f. f not in memory,

replaced by a stub @ link time. Dynamically
load f code to memory and call it. When qg's STUB is executed, the loader finds out that
fis already memory. The STUB is replaced by a call
and control is transferred to f, which is now shared

by p and g.




Memory Fragmentation

* External Fragmentation — total memory space exists to satisfy a
request for memory, but it is not contiguous

* Internal Fragmentation — allocated memory may be slightly
larger than requested memory; this size difference is memory
internal to a partition or allocation, but not being used

* Reduce external fragmentation by compaction

* Shuffle memory contents to place all free memory together in one large
block

e Compaction is possible only if relocation is dynamic, and is done at
execution time

* |/O problem
 Latch job in memory while it is involved in I/O
* Do I/O only into OS buffers



Logical Addresses, Physical Addresses, and Address

Translation
Non-Contiguous Memory Allocation

® | ogical address: address of an instruction or data
byte as used in a process by the CPU

o Can Be Viewed as a pair (comp,, byte;)

® Physical address: address in memory where an
instruction or data byte exists
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Approaches to Noncontiguous Memory Allocation

® Two approaches:
o Paging
* Process consists of fixed-size components called pages (frames)

* Page is a contiguous sequence of bytes E

* Eliminates external fragmentation
* The frame (page) size is defined by hardware

o Segmentation

* Programmer identifies logical entities in a program; each is called a
segment and is a contiguous set of bytes

* Facilitates sharing of code, data, and program modules between
processes

® Hybrid approach: segmentation with paging
o Avoids external fragmentation



» Paging is a particular implementation of Virtual
Memory

> Divide real memory-into a number of equal-sized contiguous
blocks or.page frames (f,, f, ..., f,))
° e.g., 512, 1024 bytes per block
* Physical memory address is then a pair <f, w> frame #, word offset

* When the physical address is a string of k bits (2X addressable words)
° 1st n bits form the frame number and m = k-n bits are the word offset

>"Name (Logical) Space is divided into equal-sized contiguous

pages py, P1, -, Pm, Where |py| = [fj]
* An address in virtual address space is a pair <p,w>

e NL_map associates a virtual page with a physical
frame

Paging
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Paging

* Divide physical memory into fixed-sized blocks called
frames (frame size is power of 2, generally between 512
bytes and 8,192 bytes)

* Physical address space of a process can be noncontiguous;
process is allocated physical memory whenever a frame is
available

* Divide logical memory into blocks of the same size called
pages
* Keep track of all free frames

* To run a program of size n pages, need to find n free frames
and load program

* Set up a page table to translate logical to physical
addresses

* Internal fragmentation, but minimal



