
Introduction to Monitors and 
Barriers



Dining-Philosophers Problem
• Example of a large class of concurrency-control 

problems
• Simple representation of the need to allocate several 

resources among several processes.
• Want a solution to be:
• deadlock-free 
• starvation-free

� Shared data 
◦ Bowl of rice (data set)
◦ Semaphore chopstick [5] each initialized to 1



Dining Philosophers problem

Five philosophers, p[i], sit in a circle. Each p[i] 
has a left chopstick, f[i], and a right chopstick, 
f[i+1 mod 5]. Initially, all p[i]'s are thinking, 
which requires no resources.

In order to eat, a philosopher needs to 
request both the left and the right 
chopstick. Ex: p[2] needs to request f[2] 
and f[3] to eat.



If both chopsticks are available, 
p[i] picks up the chopsticks and 
starts eating

When finished eating, p[i] puts 
down both chopsticks and enters 
again the phase of thinking.



To prevent deadlock, a situation where 
each p[i] picks up one chopstick and is 
requesting the second must be avoided, 
since all p[i]s would be blocked forever.

When one philosopher is eating, the two 
immediate neighbors are blocked 
because each needs one of the shared 
chopsticks. Ex: p[2] is holding f[2] and 
f[3], which blocks p[1] and p[3]. 



But the solution must guarantee that 
either p[0] or p[4] can eat concurrently 
with p[2], depending on which 
philosopher grabs the shared chopstick 
f[0] first.



• The structure of Philosopher i:

do  { 
P ( chopstick[i] );  //look left
P ( chopstick[ (i + 1) % 5] ); //look right

//  eat

V ( chopstick[i] );
V (chopstick[ (i + 1) % 5] );

//  think

} while (TRUE);

Dining-Philosophers Problem2

Not deadlock free; each philosopher could pick up the left 
chopstick and the right would not be available.

Chopstick[i] is 
represented by a 
binary semaphore, 
initially 1

P(chopstick[i]) 
represents picking up 
a chopstick

V(chopstick[i]0 
represents putting 
down a chopstick



Dining-Philosophers Problem3
• Remedies
• Allow at most 4 philosophers at the table
• Always 1 unused chopstick

• Allow a philosopher to pick up her chopsticks only 
if both are available
• Would require picking them up in a critical section

• Pickupleft(); Pickupright(), where Pickupright() requires she 
put down left before picking up left then right

• Require an asymmetric solution
• Even philosophers pick up right then left, odd picks up 

left then right

We’ll discuss a solution using 
“monitors”



Problems with Semaphores
• Correct use of semaphore operations:

• V (mutex)  ….  P (mutex)

• P (mutex)  …  P (mutex)

• Omitting  of P (mutex) or V (mutex) (or both)

We need to find “higher-level” synchronization primitives. That is, 
synchronization tools that provide mutual exclusion and condition 
synchronization that are explicitly hidden from the user or can be used with 
such cautions for correct use.

A monitor is such a mechanism



Monitors3

• A monitor type resembles a class in a language like 
C++ or Java
• Contains declarations of shared data
• Its procedures encode operations that manipulate shared 

data and implement process synchronization
• A condition is a situation of interest in a monitor
• A condition variable is associated with a condition
• A process executing a wait operation on a condition 

variable is blocked until some process performs a signal
operation on that condition variable. [but the wait has 
special features]

• In a concurrent system, processes can share data by 
creating a monitor object
• We simply call it a monitor



Schematic View of a Monitor

OBJECT

Function
Shared Data



Rules
• New calls enter via the ENTRY Queue. These Calls are BLOCKED outside the 

monitor until there is NO Activity in ANY guard procedure.

• Door #1 is Always UNLOCKED. When it Opens to let an Activity OUT, Door #2 
is Unlocked.

• Door #2 is Unlocked Only if there is NO activity in the Main Room (any guard 
procedure).

View of a Simple 
Monitor/Synchronization Object

 

Entry Queue 

Guard 
Procedures 

1 

2 

This type of monitor could be implemented using 
semaphores, and the compiler (assuming a 
language construction) would translate the guard
procedures to:

P (monitor_empty)
body of guard procedure

V (monitor_empty)

monitor_empty is a 
binary semaphore



Monitors5

• This is an example monitor 
used in the solution of the 
Consumer-Producer 
problem.
• Only one monitor procedure 

at a time is active. The buffer 
has N slots. Count is the 
number of filled slots procedure



Monitors6

• An outline of the producer-consumer Solution with monitors. These are 
the Producer and Consumer threads



Guard Procedure

Lock Monitor
body of guard procedure 1

UnLock Monitor

Lock Monitor
body of guard procedure 2

UnLock Monitor

P (monitor_empty)
body of guard procedure 1

V (monitor_empty)

P (monitor_empty)
body of guard procedure 2

V (monitor_empty)



Synchronization in a Monitor
Previous examples demonstrated the use of a 
lock to provide the mutual exclusion of the 
core components of the monitor procedures.

But, we lost the ‘asynchrony’ of the full 
producer/consumer solution [1 monitor 
function active at a time]

We need a mechanism to provide the 
synchronization within the monitor

Condition Variable



Why Do we Need Condition Variables?

A Condition Variable is a Synchronization Object that lets a thread 
efficiently wait for a change to shared state protected by a lock.

A lock must always protect updates to shared state.

We need a mechanism to safely block a thread while waiting for the 
shared resource to be available.

WAIT
Lock 
Entry

The Mechanism Must 
ATOMICALLY
release the lock AND block 
the thread

The Thread needs to 
reacquire the lock as it is 
released from the wait



Mesa vs. Hoare semantics for
Condition Variable implementation
• Mesa (Hansen or Lampson & Redell)
• Signal puts waiter on ready list [move from blocked -> ready]
• Signaler keeps lock and processor

• Hoare
• Signal gives processor and lock to waiter [signaler blocks]
• When waiter finishes, processor/lock given back to signaler
• Nested signals possible!



• We need to implement Synchronization 
Objects with Condition Variables

• Every CONDITION has an associated Condition 
Queue

• There is also an Urgent Queue  [Priority for 
Entry/Re-Entry of the signaler]

• Blocked (waiting for an event within the 
object) tasks go to the Condition Queues 
associated with that event.

Condition Variables Hoare Implementation



• New Activities (procedure calls) wait in the Entry Queue. When there is no activity in 
the Central Region (any procedure), then a new process can enter via Door #2.

• If an activity (executing within the monitor) exits via Door #1, one activity is allowed 
in via Door #3, the Urgent Queue, if an activity is so waiting. If there are no activities 
in the Urgent Queue, an activity is permitted to enter via Door #2 (the door is 
unlocked).

• An activity that executes a request to block or wait within the monitor enters the 
door for the appropriate condition queue ( doors 6 or 8).

• When an activity SIGNALS, the signaled condition queue is inspected. If an activity is 
waiting in the queue, the signaler enters the URGENT QUEUE and one Waiter (from 
the signaled condition queue, via door 5 or 7) enters the central region (a 
procedure).  If no activity is waiting in that signaled queue, the SIGNAL is IGNORED, 
and the signaler proceeds, eventually leaving the central region (procedure).
• All Queues are FIFO.

Monitor/Synchronization Object Rules of Operation



Monitor function Implementation Using  
(just) Semaphores

• Variables 
semaphore mutex;  // (initially  = 1)
semaphore next;     // (initially  = 0)
int next_count = 0;

• Each procedure F will be replaced by

• Mutual exclusion within a monitor is ensured.

No Condition Variables Condition Variables

P(mutex); P(mutex);

… …

Body of F() Body of F()

… …

V(mutex) if (next_count > 0)   

V(next);

else

V(mutex);

For waiting “signalers”;
“urgent queue”
next_count is # waiters in 
urgent queue

waiting signalers
mutual exclusion of monitor

Implementation  of 
Entry & Exit of 
monitor procedure



Monitor Implementation Using Semaphores2

• The operation wait(x) can be 
implemented as:

x_count++;
if (next_count > 0)

V(next);
else

V(mutex);
P(x_sem);
x_count--;

• The operation signal(x) can be 
implemented as:

if (x_count > 0) {
next_count++;    
V(x_sem);
P(next);
next_count--;

}

For each condition variable x, we  have:

semaphore x_sem; // (initially  = 0)
int x_count = 0;
next is mutex for urgent queue
next_count is number of waiting in urgent queue

Urgent 
Waiters?

To “urgent 
queue”

Soon to 
“urgent 
queue”

Binary Semaphore that will 
always be 0  
What Is the meaning?

1 more waiter 
on x condition

Release urgent 
waiter or lock

Constructing Condition Variable 
operations



• Each philosopher i invokes the operations pickup() and 
putdown() in the following sequence:

DiningPhilosophers.pickup (i);

EAT

DiningPhilosophers.putdown (i);

Monitor Solution to Dining 
Philosophers



Monitor Solution to Dining Philosophers
monitor DP

{ 
enum { THINKING; HUNGRY, EATING} state [N] ;
condition self [N];

void pickup (int i) { 
state[i] = HUNGRY;
test(i);
if (state[i] != EATING) self [i].wait;

}

void putdown (int i) { 
state[i] = THINKING;

// test left and right neighbors
test((i -1) % N);
test((i + 1) % N);

}

void test (int i) { 
if ( (state[(i -1) % N] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % N] != EATING) ) { 

state[i] = EATING ;
self[i].signal () ;

}
}

initialization_code() { 
for (int i = 0; i < N; i++)
state[i] = THINKING;

}
}



Barriers

Use of a barrier. (a) Processes approaching a barrier. (b) All 
processes but one blocked are at the barrier. (c) When the last 

process arrives at the barrier, all of them are let through.

Synchronization mechanism where groups of processes work 
together in phases. Processes go to the next phase only when all 
are at the end of particular phase.



Barrier Implemented with Semaphores
n = the number of threads
count = 0
mutex = Semaphore (1)
barrier = Semaphore (0)
// rendezvous
P(mutex)
count = count + 1
V(mutex)
if count == n:   V(barrier)   //{broadcast()}
P(barrier)   //turnstile
V(barrier)
//critical point


