
Agenda 4/2
Memory Management

Static and Dynamic Translation
The Address Translation Concept
Base / Limit Registers and Contiguous Programs
Dynamic Linking
Memory Fragmentation
Non-contiguous Program Memory

Static Relocation

Dynamic Relocation – relocation at run-time
Start with the linker
produced load module

Multiple Programs Without Memory Abstraction
• Illustration of the relocation problem.

Two Programs

Dynamic relocation using a relocation register

Base and Limit Registers
�Base and limit registers

can be used to give
each process a separate
address space
◦ Addresses referenced in

the program (virtual
addresses) are offset by
the contents of the base
register.

Flag used to
indicate need to
relocate M

O
VE

program with separate modules, different RR point to the
code (CR), the static data (DR), and the dynamic data (FR).

Main Points of Address Translation

• Address Translation Concept
• How do we convert a virtual address to a physical address?

• Flexible Address Translation
• Base and Limit [limitations?]
• Paging
• Segmentation
• Multilevel translation

• Efficient Address Translation: what we need for good performance
• Translation Lookaside Buffers (TLB)
• Virtually and Physically Addressed Caches

Address Translation Concept

Processor
Physical
Memory

Virtual Address
Physical Address

Translation Box

ok?
yes

no

raise exception

Instruction fetch or data read/write (untranslated)

Memory Management Unit MMU

Hardware Support for Relocation
and Limit Registers

Lowest Physical
Address for Process

Range of logical
addresses for Process

Relocation Register ó Base Register

Contiguous Allocation

• Multiple-partition allocation
• Hole – block of available memory; holes of various size are

scattered throughout memory
• When a process arrives, it is allocated memory from a hole

large enough to accommodate it
• Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

Main memory usually split into two partitions:
Resident operating system, usually held in low memory with interrupt
vector (& ISRs)
User processes then held in high memory

Introduction to Dynamic Relocation
Virtual = Physical Addresses

• Basic Machine Operation
loop

w:= M[pc];
oc:= Opcode(w);
adr:= Address(w);
pc:= pc +1;
case oc of

1: reg: = reg +M[adr];
2: M[adr]:= reg;
3: pc: = adr;

end
end

M[0…n] main memory

reg general register

pc Program counter

Address(w) gets operand
address of instruction w

Opcode(w) gets opcode part
of instruction w

oc = 1 Add

oc = 2 store

oc = 3 branch

Dynamic Relocation

• Machine Operation Modified for Dynamic Relocation

loop
w:= M[NL_map(pc)];
oc:= Opcode(w);
adr:= Address(w);
pc:= pc +1;
case oc of
1: reg: = reg +M[NL_map(adr)];
2: M[NL_map(adr)]:= reg;
3: pc: = adr;

end
End

With dynamic Relocation Hardware:
addresses pc and adr are treated as
relocatable (virtual) addresses and
mapped into main storage.

Generalized Mapping function:

NL_MAP (name - location map)

NL_Map{relocatable(virtual) addresses}
→ {real storage addresses}

Using Simple Relocation/Limit mapping

PC & Relocation Register (RR)/Limit R need
to be part of PCB

Dynamic Linking
• Linking postponed until execution time
• Small piece of code, stub, used to locate the

appropriate memory-resident library routine
• Stub replaces itself with the address of the routine,

and executes the routine
• Operating system needed to check if routine is in

processesʼmemory address
• Dynamic linking is particularly useful for libraries
• a table of valid entry points for the library functions is

kept by the compiler.
• When the program calls into the library, the program

indirects through the table
• System also known as shared libraries

CRp is
code RR

Code reaches a call to f. f not in memory,
replaced by a stub @ link time. Dynamically
load f code to memory and call it. When q's STUB is executed, the loader finds out that

f is already memory. The STUB is replaced by a call
and control is transferred to f, which is now shared
by p and q.

Memory Fragmentation
• External Fragmentation – total memory space exists to satisfy a

request for memory, but it is not contiguous
• Internal Fragmentation – allocated memory may be slightly

larger than requested memory; this size difference is memory
internal to a partition or allocation, but not being used

• Reduce external fragmentation by compaction
• Shuffle memory contents to place all free memory together in one large

block
• Compaction is possible only if relocation is dynamic, and is done at

execution time
• I/O problem

• Latch job in memory while it is involved in I/O
• Do I/O only into OS buffers

External => External to processes

Logical Addresses, Physical Addresses, and Address
Translation

�Logical address: address of an instruction or data
byte as used in a process by the CPU
◦ Can Be Viewed as a pair (compi, bytei)

�Physical address: address in memory where an
instruction or data byte exists

Non-Contiguous Memory Allocation

Approaches to Noncontiguous Memory Allocation
�Two approaches:
◦ Paging

� Process consists of fixed-size components called pages (frames)
� Page is a contiguous sequence of bytes
� Eliminates external fragmentation
� The frame (page) size is defined by hardware

◦ Segmentation
� Programmer identifies logical entities in a program; each is called a
segment and is a contiguous set of bytes

� Facilitates sharing of code, data, and program modules between
processes

�Hybrid approach: segmentation with paging
◦ Avoids external fragmentation

Paging

� Paging is a particular implementation of Virtual
Memory
◦ Divide real memory into a number of equal-sized contiguous

blocks or page frames (f0, f1, …, fn)
� e.g., 512, 1024 bytes per block
� Physical memory address is then a pair <f, w> frame #, word offset
� When the physical address is a string of k bits (2k addressable words)
◦ 1st n bits form the frame number and m = k-n bits are the word offset

◦ Name (Logical) Space is divided into equal-sized contiguous
pages p0, p1, …, pm, where |pk| = |fj|
� An address in virtual address space is a pair <p,w>

� NL_map associates a virtual page with a physical
frame

MEMORY

000 … 000

111 … 1112M-1

Traditional
View of
Addressing
2M cells

0
1
2
.
2k-1

0
1
2
.
2k-1

0
1
2
.
2k-1

0

1

2M/2k -1

Addressing Memory as a ‘pair’; >Block number, Within Block Address>
Shown with Equal Size Blocks (Frames)

Within Block AddressBlock Number

Paging
• Divide physical memory into fixed-sized blocks called
frames (frame size is power of 2, generally between 512
bytes and 8,192 bytes)
• Physical address space of a process can be noncontiguous;

process is allocated physical memory whenever a frame is
available
• Divide logical memory into blocks of the same size called
pages
• Keep track of all free frames
• To run a program of size n pages, need to find n free frames

and load program
• Set up a page table to translate logical to physical

addresses
• Internal fragmentation, but minimal

