
Introduction to Monitors and
Barriers

Dining-Philosophers Problem
• Example of a large class of concurrency-control

problems
• Simple representation of the need to allocate several

resources among several processes.
• Want a solution to be:
• deadlock-free
• starvation-free

� Shared data
◦ Bowl of rice (data set)
◦ Semaphore chopstick [5] each initialized to 1

Dining Philosophers problem

Five philosophers, p[i], sit in a circle. Each p[i]
has a left chopstick, f[i], and a right chopstick,
f[i+1 mod 5]. Initially, all p[i]'s are thinking,
which requires no resources.

In order to eat, a philosopher needs to
request both the left and the right
chopstick. Ex: p[2] needs to request f[2]
and f[3] to eat.

If both chopsticks are available,
p[i] picks up the chopsticks and
starts eating

When finished eating, p[i] puts
down both chopsticks and enters
again the phase of thinking.

To prevent deadlock, a situation where
each p[i] picks up one chopstick and is
requesting the second must be avoided,
since all p[i]s would be blocked forever.

When one philosopher is eating, the two
immediate neighbors are blocked
because each needs one of the shared
chopsticks. Ex: p[2] is holding f[2] and
f[3], which blocks p[1] and p[3].

But the solution must guarantee that
either p[0] or p[4] can eat concurrently
with p[2], depending on which
philosopher grabs the shared chopstick
f[0] first.

• The structure of Philosopher i:

do {
P (chopstick[i]); //look left
P (chopstick[(i + 1) % 5]); //look right

// eat

V (chopstick[i]);
V (chopstick[(i + 1) % 5]);

// think

} while (TRUE);

Dining-Philosophers Problem2

Not deadlock free; each philosopher could pick up the left
chopstick and the right would not be available.

Chopstick[i] is
represented by a
binary semaphore,
initially 1

P(chopstick[i])
represents picking up
a chopstick

V(chopstick[i]0
represents putting
down a chopstick

Dining-Philosophers Problem3
• Remedies
• Allow at most 4 philosophers at the table
• Always 1 unused chopstick

• Allow a philosopher to pick up her chopsticks only
if both are available
• Would require picking them up in a critical section

• Pickupleft(); Pickupright(), where Pickupright() requires she
put down left before picking up left then right

• Require an asymmetric solution
• Even philosophers pick up right then left, odd picks up

left then right

We’ll discuss a solution using
“monitors”

Problems with Semaphores
• Correct use of semaphore operations:

• V (mutex) …. P (mutex)

• P (mutex) … P (mutex)

• Omitting of P (mutex) or V (mutex) (or both)

We need to find “higher-level” synchronization primitives. That is,
synchronization tools that provide mutual exclusion and condition
synchronization that are explicitly hidden from the user or can be used with
such cautions for correct use.

A monitor is such a mechanism

Monitors3

• A monitor type resembles a class in a language like
C++ or Java
• Contains declarations of shared data
• Its procedures encode operations that manipulate shared

data and implement process synchronization
• A condition is a situation of interest in a monitor
• A condition variable is associated with a condition
• A process executing a wait operation on a condition

variable is blocked until some process performs a signal
operation on that condition variable. [but the wait has
special features]

• In a concurrent system, processes can share data by
creating a monitor object
• We simply call it a monitor

Schematic View of a Monitor

OBJECT

Function
Shared Data

Rules
• New calls enter via the ENTRY Queue. These Calls are BLOCKED outside the

monitor until there is NO Activity in ANY guard procedure.

• Door #1 is Always UNLOCKED. When it Opens to let an Activity OUT, Door #2
is Unlocked.

• Door #2 is Unlocked Only if there is NO activity in the Main Room (any guard
procedure).

View of a Simple
Monitor/Synchronization Object

Entry Queue

Guard
Procedures

1

2

This type of monitor could be implemented using
semaphores, and the compiler (assuming a
language construction) would translate the guard
procedures to:

P (monitor_empty)
body of guard procedure

V (monitor_empty)

monitor_empty is a
binary semaphore

Monitors5

• This is an example monitor
used in the solution of the
Consumer-Producer
problem.
• Only one monitor procedure

at a time is active. The buffer
has N slots. Count is the
number of filled slots procedure

Monitors6

• An outline of the producer-consumer Solution with monitors. These are
the Producer and Consumer threads

Guard Procedure

Lock Monitor
body of guard procedure 1

UnLock Monitor

Lock Monitor
body of guard procedure 2

UnLock Monitor

P (monitor_empty)
body of guard procedure 1

V (monitor_empty)

P (monitor_empty)
body of guard procedure 2

V (monitor_empty)

Synchronization in a Monitor
Previous examples demonstrated the use of a
lock to provide the mutual exclusion of the
core components of the monitor procedures.

But, we lost the ‘asynchrony’ of the full
producer/consumer solution [1 monitor
function active at a time]

We need a mechanism to provide the
synchronization within the monitor

Condition Variable

Why Do we Need Condition Variables?

A Condition Variable is a Synchronization Object that lets a thread
efficiently wait for a change to shared state protected by a lock.

A lock must always protect updates to shared state.

We need a mechanism to safely block a thread while waiting for the
shared resource to be available.

WAIT
Lock
Entry

The Mechanism Must
ATOMICALLY
release the lock AND block
the thread

The Thread needs to
reacquire the lock as it is
released from the wait

Mesa vs. Hoare semantics for
Condition Variable implementation
• Mesa (Hansen or Lampson & Redell)
• Signal puts waiter on ready list [move from blocked -> ready]
• Signaler keeps lock and processor

• Hoare
• Signal gives processor and lock to waiter [signaler blocks]
• When waiter finishes, processor/lock given back to signaler
• Nested signals possible!

• We need to implement Synchronization
Objects with Condition Variables

• Every CONDITION has an associated Condition
Queue

• There is also an Urgent Queue [Priority for
Entry/Re-Entry of the signaler]

• Blocked (waiting for an event within the
object) tasks go to the Condition Queues
associated with that event.

Condition Variables Hoare Implementation

• New Activities (procedure calls) wait in the Entry Queue. When there is no activity in
the Central Region (any procedure), then a new process can enter via Door #2.

• If an activity (executing within the monitor) exits via Door #1, one activity is allowed
in via Door #3, the Urgent Queue, if an activity is so waiting. If there are no activities
in the Urgent Queue, an activity is permitted to enter via Door #2 (the door is
unlocked).

• An activity that executes a request to block or wait within the monitor enters the
door for the appropriate condition queue (doors 6 or 8).

• When an activity SIGNALS, the signaled condition queue is inspected. If an activity is
waiting in the queue, the signaler enters the URGENT QUEUE and one Waiter (from
the signaled condition queue, via door 5 or 7) enters the central region (a
procedure). If no activity is waiting in that signaled queue, the SIGNAL is IGNORED,
and the signaler proceeds, eventually leaving the central region (procedure).
• All Queues are FIFO.

Monitor/Synchronization Object Rules of Operation

Monitor function Implementation Using
(just) Semaphores

• Variables
semaphore mutex; // (initially = 1)
semaphore next; // (initially = 0)
int next_count = 0;

• Each procedure F will be replaced by

• Mutual exclusion within a monitor is ensured.

No Condition Variables Condition Variables

P(mutex); P(mutex);

… …

Body of F() Body of F()

… …

V(mutex) if (next_count > 0)

V(next);

else

V(mutex);

For waiting “signalers”;
“urgent queue”
next_count is # waiters in
urgent queue

waiting signalers
mutual exclusion of monitor

Implementation of
Entry & Exit of
monitor procedure

Monitor Implementation Using Semaphores2

• The operation wait(x) can be
implemented as:

x_count++;
if (next_count > 0)

V(next);
else

V(mutex);
P(x_sem);
x_count--;

• The operation signal(x) can be
implemented as:

if (x_count > 0) {
next_count++;
V(x_sem);
P(next);
next_count--;

}

For each condition variable x, we have:

semaphore x_sem; // (initially = 0)
int x_count = 0;
next is mutex for urgent queue
next_count is number of waiting in urgent queue

Urgent
Waiters?

To “urgent
queue”

Soon to
“urgent
queue”

Binary Semaphore that will
always be 0
What Is the meaning?

1 more waiter
on x condition

Release urgent
waiter or lock

Constructing Condition Variable
operations

• Each philosopher i invokes the operations pickup() and
putdown() in the following sequence:

DiningPhilosophers.pickup (i);

EAT

DiningPhilosophers.putdown (i);

Monitor Solution to Dining
Philosophers

Monitor Solution to Dining Philosophers
monitor DP

{
enum { THINKING; HUNGRY, EATING} state [N] ;
condition self [N];

void pickup (int i) {
state[i] = HUNGRY;
test(i);
if (state[i] != EATING) self [i].wait;

}

void putdown (int i) {
state[i] = THINKING;

// test left and right neighbors
test((i -1) % N);
test((i + 1) % N);

}

void test (int i) {
if ((state[(i -1) % N] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % N] != EATING)) {

state[i] = EATING ;
self[i].signal () ;

}
}

initialization_code() {
for (int i = 0; i < N; i++)
state[i] = THINKING;

}
}

Barriers

Use of a barrier. (a) Processes approaching a barrier. (b) All
processes but one blocked are at the barrier. (c) When the last

process arrives at the barrier, all of them are let through.

Synchronization mechanism where groups of processes work
together in phases. Processes go to the next phase only when all
are at the end of particular phase.

Barrier Implemented with Semaphores
n = the number of threads
count = 0
mutex = Semaphore (1)
barrier = Semaphore (0)
// rendezvous
P(mutex)
count = count + 1
V(mutex)
if count == n: V(barrier) //{broadcast()}
P(barrier) //turnstile
V(barrier)
//critical point

