Agenda 4/2

Memory Management
Static and Dynamic Translation
The Address Translation Concept
Base / Limit Registers and Contiguous Programs
Dynamic Linking
Memory Fragmentation
Non-contiguous Program Memory

Static Relocation

0 1000
f f

0 100 1100
20 120 1120
Compile>r st 20 Linker Loader st 1120
call f call 1000
source object load load module

module module module In memory

Dynamic Relocation — relocation at run-time

Start with the linker

produced load module Loader

v

f

1000 1000

1100
1120

dynamic

logical-to-physical
address translation

load module
iIn memory

Multiple Programs Without Memory Abstraction

* |[lustration of the relocation problem.
Two Programs

0 16380 0 16380
. 28 CMP__ |28
MOV 24 24

20 20

16 16

12 12

8 8

4 4

JMP 24 0 JMP 28 0

(a) (b)

Dynamic relocation using a relocation register

relocation
register

14000
logical physical

address address
CPU o > memory
346 14346

MMU

Base and Limit Registers

16384

®Base and limit registers f
can be used to give Limit register
each process a separate
address space

o Addresses referenced in
the program (virtual

addresses) are offset by 16384

CMP

the contents of the base e eite
register. e

Y

C JMP 28)

ADD

MOV

JMP 24

(c)

32764

16412
16408
16404
16400
16396
16392
16388
16384
16380

28
24
20
16
12

code

/; 500 <+
500

program CR | 500
RR | 500 » 500 v - T
logical address Id dr, 20
qr)< id rr, 80
:| o fr, 45
physical address > 580
20
Flag used to static data
indicate need to — DR| 200 / »200
relocate _ &220 b 220 <
S /
<
m
v 45
/ dynamic data
program v \ /
RR | 100 » 100
logical add 4
oolea’ adaress Id rr, 80 845——p 845| stack |€¢—
physical address » 180 :I program with separate modules, different RR point to the
code (CR), the static data (DR), and the dynamic data (FR).

Main Points of Address Translation

* Address Translation Concept
* How do we convert a virtual address to a physical address?

* Flexible Address Translation
e Base and Limit [limitations?]
* Paging
* Segmentation
* Multilevel translation

* Efficient Address Translation: what we need for good performance
* Translation Lookaside Buffers (TLB)
 Virtually and Physically Addressed Caches

Address Translation Concept

Processor

Virtual Addr?

Memory Management Unit MMU

Translation Box

es

Physical Address

ok?———

a4

/\raise exception

N

Instruction fetch or data read/write (untranslated)

Physical
Memory

Hardware Support for Relocation

and Limit Registers

Range of logical

addresses for Process

Lowest Physical
Address for Process

limit relocation
register register
logical physical
address yes address
CPU < 7 » memory
no
\/
trap: addressing error

Relocation Register <~ Base Register

* Multiple-partition allocation

* Hole — block of available memory; holes of various size are
scattered throughout memory

* When a process arrives, it is allocated memory from a hole
large enough to accommodate it

* Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

OR) OR) 0OS OS
process 5 process 5 process 5 process 5
process 9 process 9
process 8 |:> |:> |:> process 10
process 2 process 2 process 2 process 2

Main memory usually split into two partitions:
Resident operating system, usually held in low memory with interrupt
vector (& ISRs)
User processes then held in high memory

Contiguous Allocation

* Basic Machine Operation

loop

w:= M[pc];

oc:= Opcode(w);

adr:= Address(w);

pc:=pcC +1;

case oc of
1: reg: = reg +M[adr];
2: M[adr]:=reg;
3: pc: = adr;

end
end

M[0..n] mMain memory
reg general register
pc Program counter

Address (w) gets operand
address of instruction w

Opcode (w) gets opcode part
of instruction w

oc =1 Add
oc = 2 store

oc =3 branch

Introduction to Dynamic Relocation
Virtual = Physical Addresses

 Machine Operation Modified for Dynamic Relocation

With dynamic Relocation Hardware:
addresses pc and adr are treated as

loop relocatable (virtual) addresses and
w:= M[NL_map(pc)]; mapped into main storage.
oc:= Opcode(w);
adr:= Address(w); Generalized Mapping function:
pc:=pc +1; NL_MAP (name - location map)
case oc of NL_Map{relocatable(virtual) addresses}
1: reg: = reg +M[NL_map(adr)]; — {real storage addresses}
2: M[NL_map(adr)]:=reg;
3: pc: = adr; Using Simple Relocation/Limit mapping
end PC & Relocation Register (RR)/Limit R need
End to be part of PCB

Dynamic Relocation

Dynamic Linking
* Linking postponed until execution time

* Small piece of code, stub, used to locate the
appropriate memory-resident library routine

 Stub replaces itself with the address of the routine,
and executes the routine

* Operating system needed to check if routine is in
processes memory address

* Dynamic linking is particularly useful for libraries

 a table of valid entry points for the library functions is
kept by the compiler.

 When the program calls into the library, the program
indirects through the table

e System also known as shared libraries

Reducing memory use by dynamic linking

Reducing memory use by sharing

main p main p main p main p
CRp |—»||STUB f| call f call f call f
CRpis CRp ! CRp f CRp i
code RR CRq
CRq | main q main g
STUB f call f
Code reaches a call to f. f not in memory,

replaced by a stub @ link time. Dynamically
load f code to memory and call it. When qg's STUB is executed, the loader finds out that
fis already memory. The STUB is replaced by a call
and control is transferred to f, which is now shared

by p and g.

Memory Fragmentation

* External Fragmentation — total memory space exists to satisfy a
request for memory, but it is not contiguous

* Internal Fragmentation — allocated memory may be slightly
larger than requested memory; this size difference is memory
internal to a partition or allocation, but not being used

* Reduce external fragmentation by compaction

* Shuffle memory contents to place all free memory together in one large
block

e Compaction is possible only if relocation is dynamic, and is done at
execution time

* |/O problem
 Latch job in memory while it is involved in I/O
* Do I/O only into OS buffers

Logical Addresses, Physical Addresses, and Address

Translation
Non-Contiguous Memory Allocation

® | ogical address: address of an instruction or data
byte as used in a process by the CPU

o Can Be Viewed as a pair (comp,, byte;)

® Physical address: address in memory where an
instruction or data byte exists

4

Memory Memory
Effective memory address of (comp;. byte;) allocation
— start address of memorv area allocated to comp Kernel information
= start address o n]tanl_\ arca altiocated to comyp i ury of P
+ byte number of byte; within comp;
il - Pi —.l Operand address
l i/in current instruction
Memory
Management (<
Unit MIMNIINNNDD pm Memory areas allocated
[- to process P

Memory address
where operand exists

Approaches to Noncontiguous Memory Allocation

® Two approaches:
o Paging
* Process consists of fixed-size components called pages (frames)

* Page is a contiguous sequence of bytes E

* Eliminates external fragmentation
* The frame (page) size is defined by hardware

o Segmentation

* Programmer identifies logical entities in a program; each is called a
segment and is a contiguous set of bytes

* Facilitates sharing of code, data, and program modules between
processes

® Hybrid approach: segmentation with paging
o Avoids external fragmentation

» Paging is a particular implementation of Virtual
Memory

> Divide real memory-into a number of equal-sized contiguous
blocks or.page frames (f,, f, ..., f,))
° e.g., 512, 1024 bytes per block
* Physical memory address is then a pair <f, w> frame #, word offset

* When the physical address is a string of k bits (2X addressable words)
° 1st n bits form the frame number and m = k-n bits are the word offset

>"Name (Logical) Space is divided into equal-sized contiguous

pages py, P1, -, Pm, Where |py| = [fj]
* An address in virtual address space is a pair <p,w>

e NL_map associates a virtual page with a physical
frame

Paging

MEMORY

000 ... 000 2
A 2 0
21
, mmmm =
1
2 1
21
Traditional
View of : (e e
Addressi Addressing Memory as a ‘pair’; >Block number, Within Block Address>
iy re”ssmg Shown with Equal Size Blocks (Frames)
cells

[v v

1 Block Number Within Block Address

2M-1 | 111 ... 111

Paging

* Divide physical memory into fixed-sized blocks called
frames (frame size is power of 2, generally between 512
bytes and 8,192 bytes)

* Physical address space of a process can be noncontiguous;
process is allocated physical memory whenever a frame is
available

* Divide logical memory into blocks of the same size called
pages
* Keep track of all free frames

* To run a program of size n pages, need to find n free frames
and load program

* Set up a page table to translate logical to physical
addresses

* Internal fragmentation, but minimal

