I. Assessment Requirements

You are expected to submit a collection of source codes, documentations and test results related to
the design of a chatbot. The chatbot must be modular and demonstrate the use of several major Al
techniques, as well as their integration into one user friendly system with a common topic.

Tasks

Tasks

conversation and logical reasoning components

a and b: Chatbot with rule-based and similarity-based

Chatbot topic: Make sure that the chatbot topic, as well as the individual functionalities, are
reasonably specific, so it’s unlikely someone else in the class creates very similar functionalities.

Deliverables:

]

Source codes and supplementary files: The source codes are to be programmed in Python,
and submitted in .py or .ipynb. For multiple source code files, and where you have any
supplementary files (e.g., AIML and CSV) you may compress and submit them together with
your source codes as a single .zip file. Add in-line comments and indent your source code for
maximum readability. You can use other Python packages if they are on pypi.org and you find
them useful for your chosen domain of application, but you must not use them as a
replacement for any of the specified parts of the assignment (for example, you must use AIML,
not any other method to program chatbot responses).

Documentation: The submission of each part of the coursework must have a documentation
file included. This must be submitted in single Word or pdf file using the provided template.
This document should include:

(1)Design notes: The general explanations of the system and its goals, the system
requirements, i.e., the list of what the system should do/have from a user’s perspective,
explaining the employed AI techniques, and the explanation of your programs, i.e.,
details of what parts of your program do what. You do not need to do a research or
reference your work. No word count, but the details should be reasonably enough for a
reader to understand your design.

(2)Conversation log: The submission of each part of the coursework must have a
conversation log (showing at least 20 conversation pairs for each stage). For each
conversation log, record an actual conversation between you and the chatbot that
demonstrates the implemented features. Where appropriate, annotate it with brief
comments that explain which feature/component generated this, and how, for any
particularly remarkable output. If the conversation included non-textual input (e.g.,
images), this should also be included to the degree possible.



II. Assessment Scenario/Problem

e Task a - Rule-based and similarity-based conversation features: This
submission should consist at least one Python file that implements the chat bot, one
AIML file that implements the rules, and one file of pre-defined Q/A pairs. For the
rule-based conversation, you may use the Python and AIML files provided on NOW as
a starting point, but you should extend and customise them towards your design
specification. The similarity-based conversation should be added based on the bag-of-
words model, tf/idf, and cosine similarity. If the user inputs a sentence than is
matched to an AIML entry, the answer is provided accordingly. Otherwise, the QA
pairs should be searched for the closest match, and the relevant answer is to be
returned to the user. See the notes on week 7 lab sheet for more information.

¢ Task b - Add logical reasoning extension: The aim of this task is to build a
simplistic first order logic (FOL) knowledgebase and inference engine using NLTK
library, that can be updated or queried by the user. This component could ideally be
implemented using full grammatical analysis and NLP of the user input, but this is out
of the scope of this coursework stage. Therefore, the user inputs for this component
are limited to two simple patterns of: *I know that ... is ...” and “Check that ... is ...” or
similar. For example, user types "I know that Tim is British” or “Check that Tim is
European”. You must make a KB file with a number of initial statements (at least 10)
about your chosen chatbot topic. Each fact is written in first-order logic structured in
the NLTK’s FOL syntax, such as “British (Tim)” and “British(x) -> European(x)”. In
your program, first import the initial knowledgebase file and check it for any
contradiction. Then, if the user inputs "I know that ... is ...”, first check if the new
expression is not in contradiction with the knowledgebase. If not, add it to the
knowledgebase (in memory not in the file) and respond like “OK, I will remember that
... is ...”. If the user inputs “Check that ... is ...” then you respond with “Correct”,
“Incorrect” or “Sorry, I don’t know” by applying the NLTK’s resolution algorithm. See
the notes on week 9 lab sheet for more information.

Submission Stage-1 - Includes tasks a and b.

Files to submit: A zip file containing Python program (py or ipynb), AIML file (xml), Q/A
pairs (csv), KB file (csv). Separately submitted documentation (doc, docx or pdf) that also
includes demo video URL.



What is an “Extra Functionality”?

The extra functionalities for each task, is implementing Al techniques related to the basic
task, so that it shows you have explored some new techniques on your own, and that you
showed how to program them in order to extend the minimum required functionality.
Remember that the extra works are considered only if all the basic tasks are implemented
successfully. Of course, there is no definite list of the extra functionalities you may go for,
however here are some suggestions:

Basic requirements

Extra functionalities: Think of...

Task a: A chatbot that
uses AIML for pattern-
based conversation and
tf/idf for similarity
matching.

- Other methods for communication rather than text-based.

- Other NLP techniques that makes your chatbot smarter in answering
questions

- Other web services (than what given) that you may use to extend the
chatbot answering capabilities

- etc.

Task b: Adding logical
reasoning based on FOL
knowledgebase, NLTK
library and resolution
inference.

- Other libraries or reasoning techniques.

- Other logics than FOL, e.g., fuzzy or multi-valued logics

- Other NLP techniques to support extended forms of logical
conversations than the basic ones, e.g., support for multi-valued
predicates, or designing a logical game.

- etc.




	I. Assessment Requirements
	Deliverables:

	II. Assessment Scenario/Problem
	Submission Stage-1 - Includes tasks a and b.
	What is an “Extra Functionality”?


