3% Translated from German to English - www.onlinedoctranslator.com

Functional and object-oriented TECHNISCHE
. UNIVERSITAT

programming concepts DARMSTADT

Exercise sheet 10

Questions about this exercise sheet preferably in the

moodle forum for this sheet!

Winter semester 21/22 v1.0

Subjects: Pointed List Structures

Relevant slide sets: 07

Submission of the homework: 01/28/2022 until 11:50 p.m

H Homework 10 Total 36 points

branched structures

Mandatory requirements:

+ In this homework we also require documentation using Javadoc. Observe all notes on the documentation
of Java methods, which you can find on exercise sheet 3, among others.

* All tasks (except JUnit tests) are in Packagehioin the registersrc/main/java/iimplement. Make sure you create
all files in this exact package. You write the JUnit tests in the directory
src/test/java/. The packages correspond to the respective packages of the classes to be tested.

* For file names, identifiers and strings, make sure that theseexactlyas requested - that is, do not change
the spelling (including capitalization), add punctuation marks, and do not translate into another
language unless it willexplicitrequired in the task.

+ It maynonePackages are imported or constructs from the Java standard library are used that are not
explicitly allowed. The packagesjava.langandorg.junitjupiter.apiare allowed in this homework.

In the packagehiofind a generic onepublic-ClassMyLinkedListand a generic onepublic-ClasstListitemas in chapter 07, slides
116 ff.

Withobjects,integer,doubles,Number,thongandexception are the classes from Packagejava.langmeant; WithPredicate,BiPredicate
andfunctionthe generic classes from Packagejava.util.function.

annotatiom:For a class MyLinkedList<T>Of course, one would not write such methods as you have to write in the
following, but rather the methods of java.util.LinkedList<T>. The following methods in 1 and 2 are for practice
purposes only.

Mandatory requirements: The ones in classes MyLinkedListandListitemGiven attributes and methods (including
constructors) may only be changed according to the task.


https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/package-summary.html
https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/package-summary.html
https://www.onlinedoctranslator.com/en/?utm_source=onlinedoctranslator&utm_medium=pdf&utm_campaign=attribution

H1: Exception class for myLinkedList 2 points

Write a public-ClassMyLinkedListException, directly from exception is derived.

the public-Constructor of MyLinkedListExceptionhas a parameter of formal type integer and a formal type parameter
objects. Without checking, it assumes that both current parameter values are notzero

are, and initializes the message of the exception as "(i,x)", whereby ithe one encapsulated by the first actual parameter
internal-value and xthe return of tosString applied to the second parameter.

H2: list methods 28 points

H2.1: Decompose lists 14 points

Expand the classMmyLinkedList<T>by two generic public-Object methods extractiterativelyand
extractRecursively.

Both methods each have a generic type parameter u, a parameter predT of the formal typepred-

cate<? great T>, a second parameter rcTof the formal typeFunction<? great T,? extends U> and a third parameter preduof the
formal typepredicate<? great U>. Return type of both methods ismyLinkedList<U>. Both methods assume, without
verification, that none of the three current parameter values are equalzerois. Both methods potentially throw a
formal-type exceptionmyLinkedListException.

Expand the classmyLinkedList<T>also a generic oneprivate-Object methodextractRecursivelyHelper. The method has, in
addition to the parameters ofextractRecursivelyone more parameterpsrcof the formal type

Listitem<T>and a parameterindexof the typeinternal. Return type of the method is alsomyLinkedList<u>and it also
potentially becomes a formal-type exceptionmyLinkedListExceptionthrown. This helper method is used to test the
actual functionality ofextractRecursivelyto implement.

The following is the list to whichthis.headreferences as thesource /ist, and the list returned as thetarget /ist
designated. Both lists can also be empty, that is, the casesotherList.head ==zeroandthis.head ==zeroare not excludeds, but
it won'tzeroreturned. Either method removes allListitem<T>-Objects from the source list for whose key value the
functional method ofpredT the valuetrue

delivers. For each of these so distantListitem<T>-Objects becomes aListitem<U>-Object added to the target list. The key
value of the latter object is the result of the functional method ofrcTapplied to the key value of the former object.
The method does not make any further changes to the source list, and the target list contains no additional
elements for either method.

The order ofListitem<U>-Objects in the target list is exactly the order in which their associatedListitem<T>- Objects in
the original source list (i.e. in the source list at the beginning of the call toextract*) was.

An exception is thrown if the functional method ofpredufor a key value to be inserted into the target list, the value

falsereturns. The second actual parameter of the constructor call for this exception is this key value. The first actual
parameter is the index of the associatedListitem<T>-0bject in the source list - but not the index in the current source
list, from which potentially alreadyListitem<T>0bjects were extracted, but the index at which it was at the beginning

of the call toextract*was. (As usual, isOthe index of the first list element.)

11t will follow implicitly from the further text: If the source list is empty, the target list is also empty in any case.



Mandatory Requirements:.

1. To implement the methodsextract*methods that are not already implemented may not be used or
implemented unless an exception is explicitly provided for in the task.

2. The methodextractlterativelycontains exactly one loop, so no nested loops, and recursion is not allowed.

notice: As soon as the target list is no longer empty, the method haltsextractiterativelya reference to the
currently last oneListitem<U>-object in the target list, and with the help of which the next one is created
Listitem<U>-Object appended to the target list.

3. In the methodsextractRecursivelyandextractRecursivelyHelperloops are not allowed; in particular, recursion is
necessary.

Question of comprehension on the edge(0 points):What is the benefit of specifying thatextractiteratively
contains no more than one loop?notice: Consider the case where the target list is very long, eg in the millions,
and that you extractlterativelya few million times in an application program.

H2.2: Merge lists 14 points

Expand the classmyLinkedList<T>0rder two returnless generic public-Object methods mixinlteratively
andmix inRecursively.

Both methods each have a generic type parameter u, a parameter otherListof the formal type

MyLinkedList<U>, @ second parameter bipredof the formal typeBiPredicate<? great T,? great U>, a third

parameter rcTof the formal typeFunction<? great U,? extends T>and a fourth parameter preduof the formal typePredicate<?
great U>. Both methods assume, without verification, that none of the four current parameter values are the same
zerois. Both methods potentially throw a formal-type exceptionmyLinkedListException.

Expand the classmyLinkedList<T>also a generic oneprivate-Object methodmixinRecursivelyHelper. The method has, in
addition to the parameters ofmix inRecursivelynor the parameterspsrcof the formal type

Listitem<U>,pDestof the formal typeListitem<T>andindexof the typeinternal. The method is returnless and it also
potentially raises a formal-type exceptionmyLinkedListExceptionthrown. This helper method is used to test the actual
functionality ofmix inRecursivelyto implement.

The following is the list to whichotherListreferences as thesource /ist, and the list on whichthis.headreferences as the
target listdesignated. Both lists can also be empty, that is, the casesotherList.head ==zeroandthis.head ==zeroare not
excluded. Any of the two methodsmix in*inserts a new element into the target list for each element in the source
list. The method does not make any further changes to the source list

Specifically, this means: For each elementiistiteminotherListbecomes a new oneListitem<T>-Object created and inserted
into the target list. The key value of the new element is the result of the functional method offctapplied
Onlistitem.key.

WithZobe the state of the target list at the start of the run frommix in*designated. for/€ {0,1,2, . . .Jmay beZthe state
of the target list after exactly for thatListitem<U>-Objects at the positionsO, . . ., /-10of the source list

Listitem<T>-Object has been inserted into the target list (specifically containsZI agreejitems additionally opposite 20).
For theListitem<U>-Object in position/€ {0,1,2, . . . }the source list becomes the new oneListitem<T>-Object at the
smallest positionjinZi-iinserted so that both following conditions forjbe valid:

1. For the elements in the positionsOQ, . . ., /-1the source list is the associated new item in one of the positions0
, ..., j-linZi=1, that is, the new elements are inserted into the target list in exactly the same order in which
the corresponding elements appear in the source list.



2. Either isjno position of Zi-1(That means, Zi-ithas length)); or ifZi-1ithe positionjbut contains, the functional
method of returnsbipredthe valuetruewhen applied to the key value inZi-1at positionjand the key value in the
source list at position/=1.If sobiPrednowhere the value
truereturns, the to be inserted becomesListitemappended to the end of the target list.

An exception is thrown if the functional method ofpredufor a key value in the source list, the valuefalsereturns. The
second actual parameter of the constructor call for this exception is this key value. The first actual parameter value
is the index of the associated oneListitem<U>-0bject in the source list. (As usual, isOthe index of the first list element.)

Mandatory Requirements:

1. To implement the methodsextract*methods that are not already implemented may not be used or
implemented unless an exception is explicitly provided for in the task.

2. The methodmixinlterativelycontains exactly one loop, and recursion is not allowed.

notice: Step through all elements of the source list with a reference. In this loop, manage a second
reference: OnceOis no longer a candidate for the next position to insert, this second reference always
points to thatListitem<T>-Object immediately before the next candidate.

3. In the methodsmix inRecursivelyandmixinRecursivelyHelperloops are not allowed; in particular, recursion is
necessary.

clarification:" xwill be in positionjinserted” means thatxinto position immediately after this paste operationjis
located, compare chapter 07, slide 51.

notice:The above, formal definition of the positions at which the new elements are to be inserted in the
target list can be read as a 1:1 instruction on how to implement the mixin iteratively or recursively.

Question of comprehension on the edge(0 points):It obviously easily leads to misunderstandings if you
describe processes on objects and structures that change over time and simply use the identifier under which
you address this object or this structure in the source text, because it is not always clear when and with it
which state is meant exactly. This is obviously a problem even in the simplest of cases, such as with variables
of primitive data types (what is "the value ofinternali, which point in time in the course of the program is
meant?). In the task text of 2 above you can see a common way of describing such processes unambiguously.
How can this possibility be formulated in general for any concrete object and structure type, i.e. abstracted
from the concrete situation in 2? Follow-up question: Why wasn't that necessary for 1?

H3: Testing using JUnit 6 points

Write in the packageh1oonepublic-ClassTestMyLinkedListwith two non-genericpublic-Object methods
testExtractandtestMixin. Both methods have no parameters and no return, and neither throws an exception.

| reminder.The JUnit tests should be in the directorysrc/test/java/to be written.

To make it easy for you to create test examples, see classMyLinkedLista methodaddanalogous to the method
addby interfaces java.util.Collection, only without throws-Clause. Look again at what this method is supposed to
guarantee for classes thatjava.util.List to implement.



Question of comprehension on the edge(0 points):Why has method addfrom java.util.Collection onethrows
-clause with various exception classes if it's at method addfrom MyLinkedListbut also works without it?

H3.1: test extract* 3 points

IntestExtracttest the two methodsextract*from 1 with T=array of integer andu=integer.

method testExtracttests the two methods extract*from 1 to three lists of arrays that you create deterministically (that is,
without a random number generator). Each of these three lists has six elements, and each array in any of these lists has
length3.

The functional method of the predicate predT delivers exactly thentruereturns if at least one of the three array
components is evenly divisible by at least one of the other two array components. In concrete terms, of course,
this means that the modulo operation must result in at least one pair of array componentsOhas.

The functional method of the function FcTreturns the sum of the array components.

The functional method of the predicate predudelivers exactly thentruereturns if its current parameter value is
nonnegative. 2

For the first two of these three lists, choose all six items such that extract*doesn't throw an exception. Specifically,
design the first list in such a way that exactly the elementseven indices through extract*should be extracted, and the
second list so that exactly those items odd Indexes should be extracted.

You design the third of these three lists in such a way that extract*an exception with position4should throw.

Of course, your JUnit test consists of your methodtestextracttests whether, for each of the first two lists, the target
list and the modification of the source list are used by both methodsextract*are created correctly, and for the third
list, whether an exception with correct message from both methodsextract*is thrown.

Mandatory Requirement:For the three parameters ofextract*write an appropriate class that implements each
formal parameter type, and use references to objects of those three classes as actual parameter values. In
particular, don't use lambda expressions.

H3.2: testmix in* 3 points

IntestMixintest the two methodsmix in*from 2 withT=Numberandu=thong.

The functional method of the parameterpredudelivers exactly thentrueReturns if the current parameter value is a
string representation of a number in the form of doubles is (non-binding notice: class method valueof of class
doubles).

The functional method of the parameterbipredassumes without verification that the second current parameter value is the
string representation of a number in the form of doubles is, and returns exactly then truereturns if that number is less than
the number encapsulated in the first current parameter value.

The functional method of the parameterrctassumes without verification that the second current parameter value
is the string representation of a number in the form of doubles is, and returns a reference to a doublesobject with this
number value.

method testMixintests the two methods mix in*from 2 to three pairs of source and target lists. Each source and each
target list has four elements.

For the first two pairs of lists, select all elements such that mixin*doesn't throw an exception. Specifically, you design the
first of these three pairs of lists so that the elements in the source list are exactly the elements in the resulting one

2reminder: "nonnegative" in mathematics and computer science means that the value is greater than or equal to Ois; analogously, “non-positive” means that the value
Smaller or equal Ois. Thus "non-negative" is the logical complement of "negative" and "non-positive" is the logical complement of "positive".



target list even Positions are, and the second pair of lists such that the elements in the source list exactly match
the elements in the resulting target list odd positions are.

Design the third pair of lists in such a way that an exception is thrown.

Mandatory Requirement.The current parameter values for the parameters biPred,FCTandpreduare for both
methods mix in*each formulated as a lambda expression. However, these lambda expressions are not used
directly in the method call, but are each held by a constant of a suitable type, and this constant is the current
parameter when both methods are calledmix in*.



	H Hausübung 10 – Verzeigerte Strukturen
	1 Exception-Klasse für MyLinkedList
	2 Listenmethoden
	1 Listen zerlegen
	2 Listen verschmelzen

	3 Testen mittels JUnit
	1 Test extract*
	2 Test mixin*



