
COSC2P05 Concepts of Programming Languages 

Homework 2 

Due: 14:00 pm EST, February 17, 2022 on Sakai 
 
 

1. Consider the following attribute grammar for constant declaration: 
 

1. Syntax rule: <const-declaration> → <type> <id> = <expr> 

Semantic rules: <id>.type ← <type>.type 

                          <expr>.type ← <id>.type 

                          <id>.value ←<expr>.value 

2. Syntax rule: <type> → binary 

Semantic rule: <type>.type ← binary 

3. Syntax rule: <type> → tertiary 

Semantic rule: <type>.type ← tertiary 

4. Syntax rule: <expr>[1] → <expr>[2]  <const> 

Semantic rules:  <expr>[1].value ← if <expr>[1].type = binary      

                                                               then <expr>[2].value * 2 + <const>.value                 

                                                           else <expr>[2].value * 3 + <const>.value  

                           <expr>[2].type ← <expr>[1].type 

5. Syntax rule: <expr> → <const> 

Semantic rule: <expr>.value ← <const>.value\ 

6. Syntax rule: <const> → 2 

Semantic rule: <const>.value = 2 

7. Syntax rule: <const> → 1 

Semantic rule: <const>.value = 1 

8. Syntax rule: <const> -> 0 

Semantic rule: <const>.value = 0 

9. Syntax rule: <id> -> A | B | C 

 

a. For each semantic rule, does the rule define a synthesized, inherited or intrinsic attribute? 

b. Given the input string "tertiary B = 210012" 

i)      Draw the parse tree representation for it. Is this input ambiguous? 

ii)     Draw the attribute dependency tree that shows the associated attributes at each 

node of the parse tree and their dependency relationships with attributes at other 

nodes (just like the tree in slide 59 in the week 3 lecture). 

iii)      Show the order of attribute evaluation according to the attribute dependencies. 

(just like the order of evaluations in the same slide 59 in the week 3 lecture). 

iv)      Draw the fully decorated (attributed) tree with evaluated attribute values at all 

nodes. Note: do the above steps on a single tree (akin to slide 60, week 3 lecture). 

 

 

 



 

2. Recall the semantic function we dissected in week 3 under the denotational 

semantics for mapping assignment statements to states pertaining to logical 

pretest loops (i.e, while loops): 
 

 
I want you to  

i) Describe, in natural language (i.e., English), what this function is 

doing, line by line. What are Mb and Msl? 

ii) Formally write a definition for Mb and Msl that make this function 

complete. That is: 

• Mb = ?  

• Msl = ? 

iii)  The current semantic function, Ml, is intended to model logical 

pretest loops. Write variation of it, Ml’, intended for logical posttest 

loops – do while statements; e.g., constructs that are of the form: 

do { 

    L   

} while (B); 

  

 

3. Derive the weakest precondition for the sequence of assignment statements 

and their postconditions below: 

 
a)      x = 3 * y + 1; 

y = x – 5 

{y < 1} 

  

b)      c = 3 * (1 * b + c); 

b = 2 * c – 1 

{b > 4} 



4. Implement a recursive descent-parser in C, caller parser.c, for the following 

grammar (in EBNF) where <program> is the starting non-terminal. You can 

assume that the input source program is contained in an external textfile 

(e.g., ‘front.in’), whose path name can be read from command line or in the 

main program. Note that whenever a symbol is in apostrophe, such as ‘}’, it 

implies it is not part of the EBNF metalanguage and is part of the syntax rule 

itself. 

<program> → <stmts> 

<stmts> → <stmt> [; <stmts>] 

<stmt> → <assign> | <if> | <for> | <while> | 

<assign> → id = <expr> 

<if> → if '(' <expr> ')' ( '{' <stmts> '}' | <stmt>) 

<for> → for '(' <assign> ; <expr> ; <assign> ')' ' ( '{' <stmts> '}' | <stmt>) 

<while> → while '(' <expr> ')' ( '{' <stmts> '}' | <stmt>) 

<expr> → <term {(+|-) <term>} 

<term> → <factor> {(*|/) <factor>} 

<factor> → <const> | <id> | '(' <expr> ')' 

<id> → <letter> {<letter> | <digit>} 

<const> -> <digit> { <digit> } 

<letter> -> a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z 

<digit> -> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

 

 

 

 

Example Input: a = a + b * c 

Output of the parser: 
[<program>[<stmts>[<stmt>

[<assign>[<id>a]=[<expr>[

<term>[<factor>[<id>a]]]+

[<term>[<factor>[<id>b]]*

[<factor>[<id>c]]]]]]]] 

 

Notice that the output perfectly models this tree: 



Helpful Tips: a) Start by implementing (just means copy and make sure they work) the lexical 

and syntax analyzers in my lecture slides (i.e., textbook, chapters 4.2 to 4.3); this implies the 

copying of methods including but not limited to lex(),expr(),term(), where each of 

the syntax analyzer’s methods like expr() and term() calls lex() to generate the parse. 

 

b) Then, modifications/additions to the code that are necessary for this assignment 

specification include accounting for more syntax rules, such as those for non-terminals 

<assign>, <for>, <stmts>. This means the creation of new methods such as assign(), 

for_statement(), stmts() that will be similar in flavor to the ones you have in a). Note 

that what was initially a valid statement for the old syntax rules for arithmetic expressions is no 

longer valid in this new grammar (you can’t have stand-alone expressions in the new grammar, 

such as (sum+47)/total).  

Also, you will need to modify the code in the lecture slides/textbook in order for the output to 

be a nested representation of the tree and not just the output of the lexical analyzer + the steps 

to enter tree. That is, the output, if compared to a valid assignment statement with that 

expression (say, a=(sum+47)/total) would be different as follows:  

 

 

 

 

 

 

 

 

 

 

                 (DON’T output this way) 

Finally, in the last page of this pdf, I have included more examples of input programs and their 

printed parse trees to help you test your program. 

What to submit on Sakai: 

1. A single pdf (e.g., assignment2.pdf) of your answers to all of the questions above 
(ideally typed, but you can also paste scans of handwritten answers on the pdf). 

2. Your parser.c file. 

[<program>[<stmts>[<stmt>[<assign>

[<id>a]=[<expr>[<term>[<factor>([<e

xpr>[<term>[<factor>[<id>sum]]]+[<t

erm>[<factor>[<const>47]]]])]/[<facto

r>[<id>total]]]]]]]] 

→ 

DO output this way. 



Sample input output of correct parser.c 

a = a + b 

[<program>[<stmts>[<stmt>[<assign>[<id>a]=[<expr>[<term>[<factor>[<id>a]]]+[<term>[<fa

ctor>[<id>b]]]]]]]] 

 

a = a + b * c 

[<program>[<stmts>[<stmt>[<assign>[<id>a]=[<expr>[<term>[<factor>[<id>a]]]+[<term>[<fa

ctor>[<id>b]]*[<factor>[<id>c]]]]]]]] 

 

a = b * (c - d); e = f / g 

[<program>[<stmts>[<stmt>[<assign>[<id>a]=[<expr>[<term>[<factor>[<id>b]]*[<factor>([<

expr>[<term>[<factor>[<id>c]]]-

[<term>[<factor>[<id>d]]]])]]]]];[<stmts>[<stmt>[<assign>[<id>e]=[<expr>[<term>[<facto

r>[<id>f]]/[<factor>[<id>g]]]]]]]]] 

 

if (a + b) c = d 

[<program>[<stmts>[<stmt>[<if>if([<expr>[<term>[<factor>[<id>a]]]+[<term>[<factor>[<id

>b]]]])[<stmt>[<assign>[<id>c]=[<expr>[<term>[<factor>[<id>d]]]]]]]]]] 

 

if (a) {b = c/d; e=f-g} 

[<program>[<stmts>[<stmt>[<if>if([<expr>[<term>[<factor>[<id>a]]]]){[<stmts>[<stmt>[<a

ssign>[<id>b]=[<expr>[<term>[<factor>[<id>c]]/[<factor>[<id>d]]]]]];[<stmts>[<stmt>[<a

ssign>[<id>e]=[<expr>[<term>[<factor>[<id>f]]]-[<term>[<factor>[<id>g]]]]]]]]}]]]] 

 

if (a) {b=c} 

[<program>[<stmts>[<stmt>[<if>if([<expr>[<term>[<factor>[<id>a]]]]){[<stmts>[<stmt>[<a

ssign>[<id>b]=[<expr>[<term>[<factor>[<id>c]]]]]]]}]]]] 

 

while(a*b) c = d 

[<program>[<stmts>[<stmt>[<while> 

while([<expr>[<term>[<factor>[<id>a]]*[<factor>[<id>b]]]])[<stmt>[<assign>[<id>c]=[<ex

pr>[<term>[<factor>[<id>d]]]]]]]]]] 

 

while(a) {c = g + e; d = f*b} 

[<program>[<stmts>[<stmt>[<while> 

while([<expr>[<term>[<factor>[<id>a]]]]){[<stmts>[<stmt>[<assign>[<id>c]=[<expr>[<term

>[<factor>[<id>g]]]+[<term>[<factor>[<id>e]]]]]];[<stmts>[<stmt>[<assign>[<id>d]=[<exp

r>[<term>[<factor>[<id>f]]*[<factor>[<id>b]]]]]]]]}]]]] 

 

while(b) {a = f} 

[<program>[<stmts>[<stmt>[<while> 

while([<expr>[<term>[<factor>[<id>b]]]]){[<stmts>[<stmt>[<assign>[<id>a]=[<expr>[<term

>[<factor>[<id>f]]]]]]]}]]]] 

 

for(a=b;c;a=b+d) f = g 

[<program>[<stmts>[<stmt>[<for> 

for([<assign>[<id>a]=[<expr>[<term>[<factor>[<id>b]]]]];[<expr>[<term>[<factor>[<id>c]

]]];[<assign>[<id>a]=[<expr>[<term>[<factor>[<id>b]]]+[<term>[<factor>[<id>d]]]]])[<st

mt>[<assign>[<id>f]=[<expr>[<term>[<factor>[<id>g]]]]]]]]]] 

 

for(f=g;a*b;c=e-d) {a = b+c; d=g} 

[<program>[<stmts>[<stmt>[<for> 

for([<assign>[<id>f]=[<expr>[<term>[<factor>[<id>g]]]]];[<expr>[<term>[<factor>[<id>a]

]*[<factor>[<id>b]]]];[<assign>[<id>c]=[<expr>[<term>[<factor>[<id>e]]]-

[<term>[<factor>[<id>d]]]]]){[<stmts>[<stmt>[<assign>[<id>a]=[<expr>[<term>[<factor>[<

id>b]]]+[<term>[<factor>[<id>c]]]]]];[<stmts>[<stmt>[<assign>[<id>d]=[<expr>[<term>[<f

actor>[<id>g]]]]]]]]}]]]] 

 


