The Task

In this project, you will be writing a program that receives a string of characters via the UART, checks if this
string is a palindrome, and then uses a print function to print either “Yes” or “No”. A palindrome is a sequence
of characters (typically a word or phrase) that is the same both forwards and backwards. For this project, strings
will be terminated using a period (“.”). You may assume that a string will contain at least one letter in addition to
a period (e.g., the input, “b.”, should be considered a palindrome). You will not need to handle empty strings,
strings containing only a period, or stings containing characters other than letters, spaces, and periods. Your
program should be able to handle multiple strings sent one after another or concatenated together. For
example, the string: “abba. data.” should print “Yes” followed by “No” on the next line. Spaces should be
ignored when checking for a palindrome and the palindrome should not be case sensitive. For example, “A nut

for a jar of Tuna.” would be considered a palindrome.

Print Function

A template PLP project file is available to download on Canvas. The PLP project includes a second ASM file titled,
project3_lib.asm. This ASM file contains the print function used in this project. PLPTool concatenates all ASM
files within a PLP project into a single location in memory (unless additional .org statements have been added to

specify different location for code). No changes to project3_lib.asm should be made.
When called, depending on the value in register $a0, the following string will be displayed on the simulated

UART device’s output. If Sa0 contains a zero then “No” will be displayed and if Sa0 contains a non-zero value

(e.g. one) then “Yes” will be displayed. The print function is called using the following instruction:

call project3_print

To use the print function, your PLP program needs to initialize the stack pointer ($sp) before performing the
function call (or any other operations involving the stack pointer). For this reason, the template project file

includes an initialization that sets the stack pointer to @x10fffffc (the last address of RAM).

Template Structure

The template project file contains six function stubs that need to be implemented. Five are called from the main
loop and the sixth is called from “period_check”. The template file contains comments with descriptions of what
each function needs to do and how it should be implemented. The table below provides a brief description of

the functions.

Function Name Function Description

Polling loop for UART’s status register,
poll_UART reading new character, and indicating
character has been read

Checks if new character is a period and

period_check makes a nested function call to
palindrome_check if it is

space_check Skips saving space characters to array
Converts new character to uppercase if it is

case_check
lowercase

array_push Saves new character to array

Moves inwards from front and back of array
and compares characters at each step to
determine if the string is a palindrome. If at
any point mirroring characters are not
equal, then it should use the print function
to print “No”. If the comparison reaches or
passes the midpoint then the print function
should be used to print “Yes”.

palindrome_check

.org 0x10000000

Initializations

li Ssp, Ox10fffffc

li $s0, 0xf0O000000
li Ss1, 0xf0O000004
li $s2, 0xf0O000008

Starting address of empty stack
UART base address

UART status address

UART receive address

j main
nop

array_ptr:
.space 100

li Sa0, array_ptr
move Sal, Sa0

Label pointing to 100 word array

yes:
li Sa0, 1

call project3_print
j main

nop

#Print function

no:
li Sa0, 0

call project3_print
j main

nop

#Print function

HEHHEH
Do not make changes to the main loop
HEHHEH
main:

jal poll_UART

nop

jal period_check

nop

jal space_check

nop

jal case_check

nop

jal array_push

nop

j main

nop
HEHHEH
Do not make changes to the main loop
HEHHEH

The "poll_UART" function should poll the status register of the UART.

If the 271 bit position (ready bit) is set to 1 then it

should copy the receive buffer's value into $v0 and send

a clear status command (271) to the command register before
returning (a return statement is already included)

poll_UART:
lw $t0, 0(Ss3)
li St1, 0b10
and St2, Sto, St1
beq St2, Szero, poll_UART
nop
li St6, Ox41 #'A'
li St7, OX5A #'Z'
slt St8, St7, Sv0 # Check for Uppercase
slt St9, Sv0, St6 # Check for Uppercase
beq S$t8, $t9, case_check
lw SvO, 0(Ss4)
sw St1, 0(Ss0)
jr Sra
nop

The "period_check" function should check if the current character (Sv0)
#is a period ("."). If it is a period then the function should go to the
label, "palindrome_check". If the character is not a period then it

should use the included return.

period_check:
li St3, Ox2E # Assign period to register t1
beq Sv0, $t3, palindrome_check
nop
jr Sra
nop

The "space_check" function should check if the current character (Sv0)
#is a space (" "). If it is then it should jump to "main" so

that it skips saving the space character. If not it should

use the included return.

space_check:
li St4, 0x20
beq $vO0, St4, poll_UART
jrSra
nop

The "case_check" function should check if the current character (Sv0)
is a lowercase character (i.e. greater than the ASCII value of 'Z').

If it is then it should convert the value of SvO to the uppercase

equivalent before returning. If it is already uppercase then it

should skip converting and return.

case_check:
addiu SvO0, $v0,32
jarray_push
jrSra
nop

The "array_push" function should save the current character ($v0) to the
current location of the tail pointer, $s2. Then it should increment the

tail pointer so that it points to the next element of the array. Last

it should use the included return statement.

array_push:
sw Sv0, 0(Ss1)
addiu Ss1, Ss1, 4
j poll_UART
jrSra
nop

The "palindrome_check" subroutine should be jumped to by the period

check function if a period is encountered. This subroutine should contain
a loop that traverses the array from the front towards the back (using the
head pointer, $s1) and from the back towards the front(using the tail

pointer, $s2). If the string is a palindrome then as the array is traversed

the characters pointed to should be equal. If the characters are not equal
then the string is not a palindrome and the print function should be used
to print "No". If the pointers cross (i.e. the head pointer's address is

greater than or equal to the tail pointer's address) and the compared

characters are equal then the string is a palindrome and "Yes" should be
printed.

#

Remember to restore the head and tail pointers to the first element

of the array before the subroutine jumps back to main to begin processing the
next string. Also, keep in mind that because the tail pointer is updated at
the end of "array_push" it technically points one element past the last

character in the array. You will need to compensate for this by either

decrementing the pointer once at the start of the array or using an offset
from this pointer's address.

palindrome_check:

lw $t1, 0($s4)
nop

addiu Ss3, Ss3, -4
nop

lw St2, 0(Ss3)
nop

beq Ss3, Ss4, yes
nop

bne St1, St2, no
nop

addiu Ss4, Ss4, 4
nop

beq Ss3, Ss4, yes
nop

j main

nop

