

.org 0x10000000

Initializations
li $sp, 0x10fffffc # Starting address of empty stack
li $s0, 0xf0000000 # UART base address
li $s1, 0xf0000004 # UART status address
li $s2, 0xf0000008 # UART receive address

j main
nop

array_ptr: # Label pointing to 100 word array
 .space 100
 li $a0, array_ptr
 move $a1, $a0

yes:
li $a0, 1
call project3_print #Print function
j main
nop

no:
li $a0, 0
call project3_print #Print function
j main
nop

Do not make changes to the main loop

main:
 jal poll_UART
 nop
 jal period_check
 nop
 jal space_check
 nop
 jal case_check
 nop
 jal array_push
 nop
 j main
 nop

Do not make changes to the main loop

The "poll_UART" function should poll the status register of the UART.

If the 2^1 bit position (ready bit) is set to 1 then it
should copy the receive buffer's value into $v0 and send
a clear status command (2^1) to the command register before
returning (a return statement is already included)

poll_UART:
 lw $t0, 0($s3)
 li $t1, 0b10
 and $t2, $t0, $t1
 beq $t2, $zero, poll_UART
 nop
 li $t6, 0x41 #'A'
 li $t7, 0x5A #'Z'
 slt $t8, $t7, $v0 # Check for Uppercase
 slt $t9, $v0, $t6 # Check for Uppercase
 beq $t8, $t9, case_check
 lw $v0, 0($s4)
 sw $t1, 0($s0)
 jr $ra
 nop

The "period_check" function should check if the current character ($v0)
is a period ("."). If it is a period then the function should go to the
label, "palindrome_check". If the character is not a period then it
should use the included return.

period_check:
 li $t3, 0x2E # Assign period to register t1
 beq $v0, $t3, palindrome_check
 nop
 jr $ra
 nop

The "space_check" function should check if the current character ($v0)
is a space (" "). If it is then it should jump to "main" so
that it skips saving the space character. If not it should
use the included return.

space_check:
 li $t4, 0x20
 beq $v0, $t4, poll_UART
 jr $ra
 nop

The "case_check" function should check if the current character ($v0)
is a lowercase character (i.e. greater than the ASCII value of 'Z').
If it is then it should convert the value of $v0 to the uppercase
equivalent before returning. If it is already uppercase then it
should skip converting and return.

case_check:
 addiu $v0, $v0,32
 j array_push
 jr $ra
 nop

The "array_push" function should save the current character ($v0) to the
current location of the tail pointer, $s2. Then it should increment the
tail pointer so that it points to the next element of the array. Last
it should use the included return statement.

array_push:
 sw $v0, 0($s1)
 addiu $s1, $s1, 4
 j poll_UART
 jr $ra
 nop

The "palindrome_check" subroutine should be jumped to by the period
check function if a period is encountered. This subroutine should contain
a loop that traverses the array from the front towards the back (using the
head pointer, $s1) and from the back towards the front(using the tail
pointer, $s2). If the string is a palindrome then as the array is traversed
the characters pointed to should be equal. If the characters are not equal
then the string is not a palindrome and the print function should be used
to print "No". If the pointers cross (i.e. the head pointer's address is
greater than or equal to the tail pointer's address) and the compared
characters are equal then the string is a palindrome and "Yes" should be
printed.

Remember to restore the head and tail pointers to the first element
of the array before the subroutine jumps back to main to begin processing the
next string. Also, keep in mind that because the tail pointer is updated at
the end of "array_push" it technically points one element past the last
character in the array. You will need to compensate for this by either
decrementing the pointer once at the start of the array or using an offset
from this pointer's address.

palindrome_check:
 lw $t1, 0($s4)
 nop
 addiu $s3, $s3, -4
 nop
 lw $t2, 0($s3)
 nop
 beq $s3, $s4, yes
 nop

 bne $t1, $t2, no
 nop
 addiu $s4, $s4, 4
 nop
 beq $s3, $s4, yes
 nop
 j main
 nop

