
Task 1: TCPAsk

Due
28 Feb by 17:00
Points
0
Submitting
a file upload
File types
zip
Available
28 Jan at 17:00 - 28 Feb at 17:00
about 1 month

This assignment was locked 28 Feb at 17:00.

Overview
In this task, you will learn how to:

Create TCP sockets, and use them to send and receive data
Design the client side of client-server communication
Deal with errors that can happen during the communication

The task is a programming assignment to implement a simple TCP client, as a Java class. The class
is called TCPClient, and works in a straight-forward manner:

1. Open a TCP connection to a server at a given host address and port number.
2. Send data to the server.
3. Take the data that the server sends back in response, and return that as the result.

The TCPClient Class
To use the TCPClient class, an instance should first be created. The constructor has no parameters:

public TCPClient()

TCP provides the communication service of bidirectional transfer of streams of bytes. Hence, the
TCPClient class has a method to send bytes to a server and receive bytes in return. This method is
called askServer, and its specification is as follows:

public byte[] askServer(String hostname, int port, byte[] bytesToServer) throws IOException

The hostname parameter is the domain name of the server to which the client should connect. The
port parameter is the TCP port number on the server. The bytesToServer parameter is a byte array
with the data to send to the server. So, for instance, to connect to KTH's web server and send the
data in the byte array "webdata", a program could do the following:

byte[] webdata = new byte[] ...

TCPClient webClient = new TCPClient();

byte[] response = webClient.askServer("www.kth.se", 80, webdata);

Task
Your task is straight-forward: implement the TCPClient class.

To help you with development and testing, you will also get an application program that uses the
TCPClient class. The application is called TCPAsk, which is where the name of this assignment
comes from.

Instructions and Tips
Socket I/O and Wrappers
You should use the Socket class (https://docs.oracle.com/javase/7/docs/api/java/net/Socket.html) to
create the client's socket. In Java, InputStream
(https://docs.oracle.com/javase/7/docs/api/java/io/InputStream.html) and OutputStream
(https://docs.oracle.com/javase/7/docs/api/java/io/OutputStream.html) are the basic classes for I/O,
which read and write "raw" binary data in the form of byte arrays. The slides from Kurose-Ross_5e

(https://canvas.kth.se/courses/31590/files/5060007/download?download_frd=1) suggest to use
additional "wrappers" around the socket's InputStream and OutputStream. Those wrappers add data
processing and buffering to the basic InputStream and OutputStream, and automatically convert
between text and binary data. Using wrappers like that is common in Java I/O. However, in this
assigned we want to transmit binary data transparently without additional data processing, so we
have no use for wrappers. Furthermore, it would not be a general solution; it would only work for text-
based applications, and not for binary transfers.

It is requirement in this assignment that you use InputStream and OutputStream classes for "raw"
binary I/O with byte arrays. You are not allowed to use wrappers such as
InputStreamReader/OutputStreamWriter and BufferedReader/BufferedWriter. See the slides from the
Socket Programming Lecture

(https://canvas.kth.se/courses/31590/files/5153647/download?
download_frd=1) for more information, and for examples of how to use the Socket class
(https://docs.oracle.com/javase/7/docs/api/java/net/Socket.html) for byte I/O.

Receiver Buffers
TCPClient's askServer method waits until all data has been received from the server before it
returns. In other words, askServer reads data from the TCP connection until the connection is
closed. Then the question is, how does askServer store all that data internally? Clearly askServer
needs to have a receive buffer where it stores the data it receives from the server. A simple (but
incorrect) solution would be to use a byte array of fixed size for storing the data, and make that byte
array so large that it is highly unlikely that it will overflow. This is not a good solution, for several
reasons. First, it means there is an assumption built into the program about how much data the
server could send. To design a program in that way that is not good programming. Second, the
program would occupy a lot of memory resources on the computer, resources that the program does
not use, so it is not efficient usage of the computer.

https://docs.oracle.com/javase/7/docs/api/java/net/Socket.html
https://docs.oracle.com/javase/7/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/7/docs/api/java/io/OutputStream.html
https://canvas.kth.se/courses/31590/files/5060007/download?wrap=1
https://canvas.kth.se/courses/31590/files/5060007/download?download_frd=1
https://canvas.kth.se/courses/31590/files/5153647?wrap=1
https://canvas.kth.se/courses/31590/files/5153647/download?download_frd=1
https://docs.oracle.com/javase/7/docs/api/java/net/Socket.html

A better solution is to store the data from the server in a byte array that grows dynamically (and
automatically) when more data is received. Java has a class called ByteArrayOutputStream that does
exactly this. Use this class to implement the receive buffer for askServer. You probably need two
levels of buffer. One smaller buffer (byte array) of fixed size that you use in the read operations on
the socket, and a ByteArrayOutputStream object where you store the data received so far.

TCPAsk
TCPAsk is a Java application that uses the TCPClient class to communicate with a server. TCPAsk
has two mandatory parameters given on the command line: the host and the port to which TCPAsk
should connect. TCPAsk also takes an optional string as parameter. This string is appended with a
newline character (linefeed '\n') before being converted to a byte array and sent as data to the server.
So TCPAsk connects to the server, sends the optional data over the connection to the server (if there
is any), decodes the data received from the server into text, and prints the text as program output.

For example, assume we want to contact the "daytime" server at "time.nist.gov". The Daytime
protocol is a standardised protocol for asking a Daytime server about the current date and time.
Daytime runs at TCP port 13 by default. So we could use TCPAsk in the this way:

$ java TCPAsk time.nist.gov 13

time.nist.gov:13 says:

59604 22-01-25 18:03:08 00 0 0 626.1 UTC(NIST) *

The following example uses another Internet protocol, the "whois" protocol, which is for making
queries about resources on the Internet. The whois protocol uses port 43. Here we use the third
optional argument to TCPAsk to pass a string to the whois server asking for information about the
domain name "kth.se".

$ java TCPAsk whois.iis.se 43 kth.se

whois.iis.se:43 says:

...

(The output is quite lengthy, so try this for yourself and check the output!)

Note: TCPAsk is a text application, meaning that it sends encoded text to the server, and decodes
the result from the server into text. This makes it easier to use from the command line program, but it
also means that we cannot use TCPAsk to communicate with servers that use other data formats
than text.

Testing
You will need servers to test against. Here are some suggestions.

Protocol Server name Port
Arguments

(data sent to server)

Comment

Public server at NIST

Daytime time.nist.gov 13 None

Public server at NIST,
of Standards and Tech
government agency. N
has limitations for how
query it (at most once
See https://tf.nist.gov
(https://tf.nist.gov/tf-cg

Daytime java.lab.ssvl.kth.se 13 None KTH server.

Whois whois.iis.se 43
String (a domain name, an
IP address or an AS
number)

Public server at the Th
Foundation (Internetst

Whois whois.internic.net 43
String (a domain name, an
IP address or an AS
number)

Public server at ICANN
Corporation For Assign
Numbers.

Use public servers with care. Abuse may be detected and reported.

Resources
For this task, you will be provided with the following files:

TCPAsk.java – the TCPAsk Java program
tcpclient/TCPClient.java – Skeleton declaration of the tcpclient.TCPClient class.

The files are available in a zip archive called "task1.zip". In this zip archive, the files are stored in a
directory called "task1". So, when you unzip the archive, the "task1" directory will be created, and in
this directory you will find the two Java files. This is important, because you are expected to submit
your files in a zip archive with exactly the same structure!

You can find the zip archive here: task1.zip.

(https://canvas.kth.se/courses/31590/files/5150004/download?download_frd=1)

Submission
Your submission should be a zip file named "task1.zip", containing the same files and directory
structure as in the template. In other words, you should return a zip archive like the one you received

with templates, with the same file names and the same directory structure.

Submit by uploading your "task1.zip" file below. You can submit as many times as you like before the
due date.

Submit in the Correct Format
Make sure to verify that your submission follow the required format! You can run the unzip command

https://tf.nist.gov/tf-cgi/servers.cgi
https://canvas.kth.se/courses/31590/files/5150004?wrap=1
https://canvas.kth.se/courses/31590/files/5150004/download?download_frd=1

line program to check your submission. The output should be something like this (depending on your
platform):

$ unzip -l task1.zip

Archive: task1.zip

 Length Date Time Name

--------- ---------- ----- ----

 288 01-26-2018 10:02 task1/tcpclient/TCPClient.java

 1254 02-05-2018 13:03 task1/TCPAsk.java

--------- -------

 1542 2 files

If you are using zip as a command line tool, the easiest way to make sure that you get the right
format for the zip archive is to go to the directory where the "task1" directory is. (In other words, don't
position yourself inside the task1 directory. Instead, you should be one step above.)

Then run the following:

zip task1.zip task1/tcpclient/TCPClient.java task1/TCPAsk.java

Mac users that have problems with extraneous files in the archive can try the following:

We use automatic tools for the grading. If your submission does not follow this format, the tools will
not recognise your submission, and it cannot be graded. Before you upload your submission, make
sure that it follows the format requirements. You can do that by repeating what the submissions tools
do, by running the following commands at the command line:

$ unzip task1.zip

$ cd task1

$ javac TCPAsk.java

$ java TCPAsk time.nist.gov 13

Make sure that this sequence of command can be executed with your submission exactly as written.
Otherwise, you are very likely to fail.

Evaluation
The first part of the evaluation is to verify that your submission has the correct format, as described
above. If it does not have the correct format, no further evaluations are made, and the result will be
"fail".

As part of the evaluation of your submission, a number of tests are conducted to check the
functionality of your submission.

COPYFILE_DISABLE=1 zip task1.zip task1/tcpclient/TCPClient.java task1/TCPAsk.java

