
3/8/22, 8:10 AM Project 3 -- memory manager

https://grader2.eecs.umich.edu/eecs482/project3/ 1/27

Project 3 -- memory manager

Worth: 15 points

Assigned: February 24, 2022

Due: March 23, 2022

1. Overview

In this project, you will design and implement a pager, which is
the part of the kernel that

manages application processes' virtual address
spaces. Your pager will manage a portion of each

application
process's address space; we call this portion the arena. Pages in
the arena will be

stored in physical memory, in a swap file, or in a
regular file. Your pager will manage these

resources on behalf of all the
applications it manages.

Your pager will implement system calls that applications can use to create,
copy, and destroy

address spaces, allocate space in an existing address
space, and switch between address

spaces. Your pager will also implement
the interrupt handler for memory faults.

This handout is organized as follows:

Section 2 describes the overall
structure of the system.

Section 3 describes the simulated hardware used
in this project.

Section 4 describes the system calls that applications
can use to communicate explicitly with

the pager.

Sections 5 and 6 are the main sections; they
describe the functionality that you will

implement in the pager and how to
design your pager to minimize work.

Section 7 describes how your pager will
maintain the emulated page tables and access

physical memory and files.

Section 8 gives some hints for doing the project,

Sections 9-12 describe the test suite and
project logistics/grading.

2. System structure

The system has two types of entities: application processes and the kernel
(you are writing the

pager part of the kernel). Application processes
communicate with the kernel via system calls and

page faults. In turn,
the kernel provides processes with the address space abstraction by reading

and writing physical memory, files, swap space, page tables, and the page
table base register.

3/8/22, 8:10 AM Project 3 -- memory manager

https://grader2.eecs.umich.edu/eecs482/project3/ 2/27

(The kernel also has an address space, but you are
not responsible for managing the kernel's

address space).

Applications interact with the kernel through the following mechanisms
(summarized by the

diagram below):

An application requests service from the kernel by making system
calls. This project deals

with the following system calls: fork ,
 exit , vm_yield , and vm_map . A system call
invokes

the computer's exception handling mechanism, which transfers
control safely to the

registered kernel handler for that system call.

An application also transfers control to the kernel when it executes a
load instruction to an

address that is not read-enabled, or it executes a store
instruction to an address that is not

write-enabled. On such accesses, the
MMU triggers a page fault, and the exception handling

mechanism transfers
control to the kernel's page fault handler. The MMU retries the faulting

instruction after the page fault handler returns.

When the application executes a load or store instruction to an
address that is resident in

memory, and the access is allowed by the page's
protection, the MMU translates the virtual

address to a physical address
using the page table entry (PTE) for that address, which is

stored in the
page table pointed to by the page table base register (PTBR). The processor

then accesses that physical address.

3/8/22, 8:10 AM Project 3 -- memory manager

https://grader2.eecs.umich.edu/eecs482/project3/ 3/27

Items in [brackets] may or may not be called, depending on what processes
are running. Note that

there are two versions of vm_map : one in
the application and one in the pager. The application-
side vm_map
is a system call wrapper and is called by the application process. When
the

application calls this function, the infrastructure invokes the
corresponding system call in your

pager. vm_yield is another
system call wrapper and may cause the infrastructure to call

vm_switch . The declarations for these functions are in
 vm_app.h and vm_pager.h .

We provide the software infrastructure shown in grey. This infrastructure
emulates the MMU and

exception-handling functionality of normal hardware,
as well as physical memory and file and

swap space. To use this
infrastructure, each application that uses the pager must include

vm_app.h and link with
 libvm_app.o , and your pager must include
 vm_pager.h and link with

libvm_pager.o .
Linking with these libraries enables application processes to communicate
with
the pager in the same way that applications on real hardware
communicate with real operating

systems. Applications issue load and store
instructions (compiled from normal C++ variable

accesses), and these are
translated or faulted by the infrastructure exactly as in the above

description of the MMU. The infrastructure transfers control on faults and
system calls to the

pager, which receives control via function calls.
The infrastructure also invokes your pager's

vm_init function
when the pager starts.

3. Memory management hardware

https://grader2.eecs.umich.edu/eecs482/project3/vm_app.h
https://grader2.eecs.umich.edu/eecs482/project3/vm_pager.h
https://grader2.eecs.umich.edu/eecs482/project3/vm_app.h
https://grader2.eecs.umich.edu/eecs482/project3/libvm_app.o
https://grader2.eecs.umich.edu/eecs482/project3/vm_pager.h
https://grader2.eecs.umich.edu/eecs482/project3/libvm_pager.o

3/8/22, 8:10 AM Project 3 -- memory manager

https://grader2.eecs.umich.edu/eecs482/project3/ 4/27

The system uses a single-level page table. A virtual address is composed
of a virtual page number

and a page offset:

When the application executes a load or store instruction, the MMU checks
the protection bits of

the virtual page being accessed, translates the
virtual address to a physical address, and

accesses the page. To carry out
these tasks, the MMU uses information in the page table entry

(PTE)
for the virtual page being accessed. The array of PTEs for a process is
called a page table.

In this project, the page table stores an
entry for each virtual page in the arena.

Page tables are stored in the kernel's address space. The system's
page table base register

(PTBR) contains the kernel address of the
page table currently in use. The PTBR is a variable that

is declared and
defined by the infrastructure (but will be controlled by your pager).

vm_arena.h describes the arena
of a process, which are the addresses in the range

[VM_ARENA_BASEADDR , VM_ARENA_BASEADDR + VM_ARENA_SIZE) .

The following portion of vm_pager.h
describes a page table entry, page table, and page table

base register.
Note that the MMU for this project does not automatically maintain dirty
and

reference bits. Instead, these state bits will be maintained by your
pager.

/*

 * **************************************

 * * Definition of page table structure *

 * **************************************

 */

/*

 * Format of page table entry.

 *

 * read_enable=0 ==> loads to this virtual page will fault

 * write_enable=0 ==> stores to this virtual page will fault

 * ppage refers to the physical page for this virtual page (unused if

 * both read_enable and write_enable are 0)

 */

struct page_table_entry_t {

 unsigned int ppage : 20;	 	 /* bit 0-19 */

 unsigned int read_enable : 1;	 /* bit 20 */

 unsigned int write_enable : 1;	 /* bit 21 */

};

https://grader2.eecs.umich.edu/eecs482/project3/vm_arena.h
https://grader2.eecs.umich.edu/eecs482/project3/vm_pager.h

3/8/22, 8:10 AM Project 3 -- memory manager

https://grader2.eecs.umich.edu/eecs482/project3/ 5/27

/*

 * Format of page table. Entries start at the beginning of the arena,

 * i.e., ptes[0] is the page table entry for the first virtual page in the arena

 */

struct page_table_t {

 page_table_entry_t ptes[VM_ARENA_SIZE/VM_PAGESIZE];

};

/*

 * MMU's page table base register. This variable is defined by the

 * infrastructure, but it is controlled completely by the student's pager code.

 */

extern page_table_t *page_table_base_register;

4. Application semantics

This section describes the semantics of an address space that are provided
to applications. Note

that these describe the behavior of an address space
from the perspective of an application. As

with most operating
system abstractions, the physical reality may differ from the illusion
seen by

an application. For example, the application sees all valid
pages as being in memory, but these

pages may actually exist only on disk.

4.1. Swap-backed and file-backed pages

The system supports two types of virtual pages: swap-backed and
file-backed.

A swap-backed virtual page is initialized to all zeroes when the page is
added to the address

space. The data in a swap-backed page are lost when
the process exits. A swap-backed page is

private to a process, i.e., it is
not shared with any other virtual page, either in the same process or

other processes.

A file-backed virtual page corresponds to a specific block of a specific
file. The data in these files

live beyond the lifetime of
application processes. A particular file block can be mapped

simultaneously to multiple processes or to multiple pages in one process,
and all virtual pages

that are mapped to this file block refer to the same
data (i.e., they are aliases). For example,

stores to one virtual page
mapped to this file block are seen by loads to all virtual pages mapped

to
this file block.

4.2. System calls

3/8/22, 8:10 AM Project 3 -- memory manager

https://grader2.eecs.umich.edu/eecs482/project3/ 6/27

Applications use four system calls to communicate explicitly with the
pager: vm_map , vm_yield ,
fork , and
 exit . The prototypes for vm_map and vm_yield
are given in the file vm_app.h ; the
prototypes for fork and exit are given in the Linux
manual pages. Most application programs

only use vm_map
explicitly, since fork and exit are called implicitly
when a process starts and

ends, and vm_yield is used only to
control process scheduling.

A process calls vm_map(filename, block) to ask for the lowest
invalid page in its arena to be

declared valid. vm_map returns
the address of the new virtual page. E.g., if the valid part of the

arena
is 0x600000000-0x60003ffff , the return value of the next
 vm_map call will be

0x600040000 , and the resulting valid
part of the arena will be 0x600000000-0x60004ffff .
vm_map can be used to map swap-backed or file-backed pages.
A swap-backed page is mapped

if filename is nullptr ;
otherwise a file-backed page is mapped to the specified filename
and

block . When mapping a file-backed page,
 filename should be a null-terminated C string and

must reside completely in the valid portion of the arena.
(FYI, the vm_map interface is similar to

the mmap call
provided by Linux. The interfaces you normally use to to manage dynamic
memory

(new , delete , malloc , and free)
are built on top of mmap .)

A process calls vm_yield to ask the pager to run another
process. If no other process is running,

vm_yield has no effect.
The infrastructure's scheduling policy is non-preemptive: the current

application process runs until it calls vm_yield or exits.

A (parent) process calls fork to create a new (child) process.
The child process starts with a

copy of the parent's address space,
including a copy of the mappings and data of the parent's

arena. Note that
the data in a child's swap-backed page is only a copy of the data
in its parent's

page; swap-backed virtual pages are not shared with
each other from the processes'

perspectives.

A process calls exit to ask the pager to destroy its address space.
Data in a process's swap-

backed pages are lost when the process exits.
File-backed pages are not affected when a process

exits.

Here is an example application program that uses the pager.

#include <iostream>

#include <cstring>

#include <unistd.h>

#include "vm_app.h"

using std::cout;

int main()

{

/* Allocate swap backed page from the arena */

https://grader2.eecs.umich.edu/eecs482/project3/vm_app.h

3/8/22, 8:10 AM Project 3 -- memory manager

https://grader2.eecs.umich.edu/eecs482/project3/ 7/27

 /* Allocate swap-backed page from the arena */

 char *filename = (char *) vm_map(nullptr, 0);

 /* Write the name of the file that will be mapped */

 strcpy(filename, "lampson83.txt");

 /* Map a page from the specified file */

 char *p = (char *) vm_map (filename, 0);

 /* Print the first part of the paper */

 for (unsigned int i=0; i<1937; i++) {

	 cout << p[i];

 }

}

5. Pager functions

This section describes the functions you will implement in your pager:
 vm_init , vm_create ,
vm_switch ,
 vm_map , vm_fault , and vm_destroy . These
functions are declared in vm_pager.h .

The
rest of the kernel (e.g., main) is implemented in libvm_pager.o and will call your pager

functions in response to various events in the system (e.g., system
initialization, system calls,

page faults).

This section describes when each pager function is called by the
infrastructure and, in general

terms, what is the purpose of each function.
Your job in this project is to design and implement

the specifics of your
pager to carry out these purposes as efficiently as possible (this is
discussed

more in Section 6).

5.1. vm_init(unsigned int memory_pages, unsigned int
swap_blocks)

The infrastructure calls vm_init when the pager starts.
 memory_pages and swap_blocks
specify the number of
physical memory pages and swap blocks in the system. vm_init
should

set up whatever data structures you need to begin accepting
 vm_create and subsequent

requests from processes.

You may assume that, once started, the pager never exits.

5.2. vm_create(pid_t parent_pid, pid_t child_pid)

The infrastructure calls vm_create when a parent process
creates a new child process via the

fork system call.
The pager should initialize whatever data structures it needs to
manage the

https://grader2.eecs.umich.edu/eecs482/project3/vm_pager.h
https://grader2.eecs.umich.edu/eecs482/project3/libvm_pager.o

3/8/22, 8:10 AM Project 3 -- memory manager

https://grader2.eecs.umich.edu/eecs482/project3/ 8/27

new child process. In addition, it should cause the child's
arena to be a duplicate of the parent's

arena. That is, each page in the
child's arena should have the same mapping as the corresponding

page in the parent's arena (both swap-backed and file-backed pages), and
the data in the child's

arena should appear (to the child) to be
initialized to the values that were in the parent's arena

when the child
was created. The pager will use copy-on-write sharing
(Section 6.3) to defer

copying the parent's data, so
creating the child will not affect the parent's residence or reference

bits.

If the parent process is not already known to the pager, vm_create
should assume the parent's

arena is empty. This occurs when the parent
process (e.g., /bin/bash) was not linked with
libvm_app.o .

Core/advanced:
The core version of the pager need only handle vm_create calls by
processes

with empty arenas. The advanced version of the pager should be
able to handle vm_create calls

by processes with empty or
non-empty arenas.

Note that the child process is not running at the time vm_create
is called. The child process will

run when it is switched to via
 vm_switch .

vm_create should ensure that there are
enough available swap blocks to hold all swap-backed

virtual pages (this is
called eager swap reservation). If there are not enough free swap blocks,

vm_create should return -1 . The benefit of eager swap
reservation is that applications know at

the time of vm_create (and
 vm_map) that there is no more swap space, rather than when a
page
needs to be evicted. vm_create should return 0 on success.

5.3. vm_switch(pid_t pid)

The infrastructure calls vm_switch when the OS scheduler runs a
different process. vm_switch
should take whatever action is
needed to change address spaces to the process with ID pid .

5.4. vm_map(const char *filename, unsigned int block)

vm_map is called when a process wants to make another virtual
page in its arena valid. vm_map
should return the
address of the new valid virtual page. E.g., if the arena
before calling vm_map is

0x600000000-0x60003ffff , the
return value of vm_map will be 0x600040000 , and the
resulting
valid part of the arena will be 0x600000000-0x60004ffff .
 vm_map should return nullptr if it

cannot handle
the request (e.g., the arena is full).

5.4.1. Swap-backed pages

If filename is nullptr , block is ignored, and
the new virtual page is swap-backed and private

(i.e., not shared with any
other virtual page). The application should see each byte of a newly

mapped swap-backed virtual page as initialized with the value 0.

https://grader2.eecs.umich.edu/eecs482/project3/libvm_app.o

3/8/22, 8:10 AM Project 3 -- memory manager

https://grader2.eecs.umich.edu/eecs482/project3/ 9/27

Swap-backed pages are stored in the system's swap file when there are no
free physical pages.

vm_map should ensure that there are enough swap blocks to hold all
swap-backed virtual pages

(eager swap reservation), otherwise
 vm_map should return nullptr .

5.4.2. File-backed pages

If filename is not nullptr , it points to a null-terminated C
string in the application's address

space, which
specifies the name of the file that backs the new virtual page.
 filename is

specified relative to the pager's current working
directory.

The C string pointed to by filename should reside completely in
the valid portion of the

application's arena. Remember that
 filename is a pointer to the application's
address space, so

vm_map will need to access the C string pointed
to by filename via physical memory. Your pager

should treat
 vm_map 's accesses to the application's data exactly as if they
came from the

application program for the purposes of protection,
residence, and reference bits.

vm_map should return nullptr if filename is not
completely in the valid part of the arena.

Other than checking that the C
string is in the valid part of the arena, vm_map need not (and

should not) verify that filename and block are legal (hint: think about
when these will be checked).

At any given point in time, zero or more virtual pages may be mapped to a
given file and block. All

virtual pages mapped to the same
 (filename, block) are shared with each other. The pager

should
manage all members of a set of shared virtual pages as a single virtual
page. E.g., a set of

shared virtual pages should be represented as a
single node on the clock queue.

5.5. vm_fault(const void *addr, bool write_flag)

vm_fault is the kernel's page fault handler. It is called by
the infrastructure when an application

reads a page that is not read-enabled,
or writes a page that is not write-enabled.
 addr contains

the faulting address; write_flag
is set if the access was a write.

vm_fault should return 0 after successfully handling a fault.
 vm_fault should return -1 if it

cannot handle the fault (e.g., the
address is to an invalid page).

Your pager determines which accesses in the arena will generate faults by
setting the

read_enable and write_enable fields in the
page table. The actions performed in vm_fault
will depend on
the state of the virtual page, and why the pager wanted accesses to
the page to

generate a fault.

5.6. vm_destroy()

3/8/22, 8:10 AM Project 3 -- memory manager

https://grader2.eecs.umich.edu/eecs482/project3/ 10/27

vm_destroy is called by the infrastructure when the corresponding
application exits. This gives

the pager a chance to clean up any resources
used by the exiting process, such as page tables,

physical pages, and swap
blocks.

6. Pager design

A major part of this project is designing your pager to minimize the
work needed to provide the

required address space abstractions to
applications. This section describes various aspects of

how to
design your pager to minimize work.

6.1. Deferring and avoiding work

The main way to minimize work is to avoid and defer work whenever possible.
There are points in

this project where careful state maintenance
can help you avoid doing work. Whenever possible,

avoid work. For
example, if a page that is being evicted does not need to be written to
disk, don't

do so. (However, the victim selection algorithm in
Section 6.2 must be used as specified; e.g.,

don't change the victim selection to avoid writing a page to disk).

Similarly, there are many points in this project where you have some
freedom over when page

copying, page faults, and disk I/O happen. Your
pager should defer such work as far into the

future as possible.

If you could possibly defer or avoid some action at the possible expense of
making another action

necessary, keep in mind that incurring a fault (about
5 microseconds on current hardware) is

cheaper than copying a page (30
microseconds), which is in turn cheaper than a disk I/O (10

milliseconds).
For instance, if you have a choice between taking an extra page fault and
causing

an extra disk I/O, you should prefer to take the extra fault.

6.2. Replacement and eviction

The virtual memory abstraction allows the address spaces managed by the
pager to exceed the

size of physical memory available to the pager. This
is a classic use of caching: storing a subset of

data in a fast but small
space (in this case, physical memory), while the rest of the data lives in
a

large but slow space (in this case, files).

With virtual memory, some virtual pages will be resident (in physical memory)
and some will be

non-resident (not in physical memory). Your pager will
provide the illusion to applications that all

virtual pages are resident
(in fact, other than timing, applications should see no difference

between resident and non-resident pages). To maintain this illusion,
your pager should arrange for

faults to occur when an application accesses
a non-resident page. When such a fault occurs, the

pager should find a
physical page to associate with the virtual page. If there are no free
physical

pages, the pager should create a free physical page by evicting a
virtual page that is resident.

3/8/22, 8:10 AM Project 3 -- memory manager

https://grader2.eecs.umich.edu/eecs482/project3/ 11/27

Use the clock (also called FIFO with second-chance) algorithm to
select a victim. The clock queue

is an ordered list of all physical pages
that are in use and are candidates for eviction. To select a

victim,
remove and examine the page at the head of the queue. If the head page has
been

accessed since it was last enqueued, it should be moved to the tail of
the queue, and victim

selection should proceed to the next page in the
queue. If the page at the head has not been

accessed since it was last
enqueued, its virtual page should be evicted. All physical pages that are

in use are treated the same when selecting a victim page to evict. When a
virtual page is made

resident, it should be placed at the tail of the clock
queue and marked as referenced.

When the pager evicts a virtual page, it may need to write the page's data
to the backing storage

for that page (either the swap file or the file
block specified when that page was mapped). Since

disk I/O is expensive,
the pager should only write data to the file if the page is dirty,
i.e., its

contents differ from the contents in the file.

To implement the clock replacement algorithm and avoid writing data
unnecessarily to disk, you

will need to maintain reference and dirty bits
for each resident virtual page. Since the MMU for

this project does not
maintain dirty or reference bits, your pager will need to maintain these
bits in

its own data structure, by (1) setting the protection bits to
generate page faults on relevant

accesses and (2) updating the state of the
faulting virtual page in vm_fault .

6.3. Copy-on-write sharing

Your pager may share a physical page, file block, or swap block among
multiple virtual pages. It

should manage a set of virtual pages that share
physical resources as a single virtual page. E.g., a

set of virtual pages
that share a physical page should be represented as a single node on the

clock queue.

Sharing a physical resource can be used for two different purposes:

It can help the pager provide the abstraction of a shared virtual
page, i.e., when multiple

virtual pages are mapped to a particular file
block. In this case, sharing takes place both at

the physical level (from
the hardware's perspective) and at the virtual level (from the

application's perspective).

It can help the pager reduce resource usage and save work, even when
the virtual pages that

are using this resource are not shared from
an application's perspective. The rest of this

section is about this
use of sharing, which we call copy-on-write sharing.

Copy-on-write sharing is useful when multiple virtual pages are not shared
from an application's

perspective, but have the same data values. For
example, when a parent process calls fork , the
data in the
child's pages are the same values as the data in the parent's pages.
As long as the

data values are guaranteed to match, the parent and child's
virtual pages can both be stored in

the same physical resource. However,
when the data changes in either the parent's or child's

3/8/22, 8:10 AM Project 3 -- memory manager

https://grader2.eecs.umich.edu/eecs482/project3/ 12/27

virtual page,
both virtual pages will no longer be able to use the same physical
resource, so

another copy will need to be made. This technique is called
copy-on-write because a copy

operation is deferred until one of the virtual
pages is written.

Your pager should use copy-on-write sharing whenever it can deduce (without
examining the data

on the page) that two or more virtual pages have the
same data but are not being shared from an

application's perspective.

A copy operation will occur when one of the virtual pages using
copy-on-write sharing is written.

Your pager will initiate the copy
operation in response to an application's store instruction, and

should
carry out this copy operation as follows:

1. Read the data from the page, and write it into a temporary buffer.
The temporary buffer

should be a normal variable in the kernel's address
space (not a page allocated from physical

memory). This read should have
the same effect on the contents of physical memory, page

tables, and the
clock queue as if the application process had read the page.

2. Write the data (from the temporary buffer) to a new physical page. The
new physical page

should be assigned to the virtual page whose write
triggered the copy-on-write operation;

the other virtual page(s) should
retain the old physical page. This write should have the same

effect on
the contents of physical memory, page tables, and clock queue as if the
application

process initiating the copy-on-write is writing the page
(which, of course, it is).

The advantage of using a temporary buffer (instead of copying the data
directly between two

physical memory pages) is it avoids the need to keep
both the old page and the new page in

physical memory at the same time.

Hint: Writing to a virtual page that is being shared via copy-on-write
should have the same effect

on the system as reading it, then writing it.

6.4. Pinning memory

Kernels sometimes guarantee that certain virtual memory pages will not be
evicted. We refer to

this technique as pinning. Pinning a page
may improve performance or simplify the kernel. In

some systems (though
not this project), pinning a page is needed to eliminate circular

dependencies.

In this project, you will use pinning to reserve a physical page in
which all bytes have the integer

value zero (not the character '0').
This zero page should be allocated and initialized with zeroes

when the pager starts, and it should never be evicted. Having a physical page
full of zeroes is

useful in this project because all swap-backed pages are
(from the perspective of applications)

initialized with zeroes when they
are first mapped.

3/8/22, 8:10 AM Project 3 -- memory manager

https://grader2.eecs.umich.edu/eecs482/project3/ 13/27

Use the zero page to reduce faults for swap pages. Consider what
 read_enable and

write_enable should be for virtual
page(s) that are mapped to the zero page, and remember to

avoid and defer
work whenever possible.

7. Interface used by pager to access the simulated hardware

The following portion of vm_pager.h
describes the variables and utility functions for accessing

physical memory
and files.

/*

 * ***

 * * Interface for accessing files. Implemented by infrastructure *

 * ***

 *

 * You may assume that, while the pager is running, no other process

 * accesses its files. You may also assume that once a file block is

 * accessed successfully, it will remain accessible (although the

 * reverse may not be true; a file that cannot be accessed now may be

 * accessible later).

 */

/*

 * file_read

 *

 * Read page from the specified file and block into buf.

 * If filename is nullptr, the data is read from the swap file. buf should

 * be an address in vm_physmem.

 * Returns 0 on success; -1 on failure.

 */

extern int file_read(const char* filename, unsigned int block, void* buf);

/*

 * file_write

 *

 * Write page from buf to the specified file and block.

 * If filename is nullptr, the data is written to the swap file. buf should

 * be an address in vm_physmem.

 * Returns 0 on success; -1 on failure.

 */

extern int file_write(const char* filename, unsigned int block, const void* buf);

/*

 * ***

 * * Public interface for the physical memory abstraction. *

 * * Defined in infrastructure. *

https://grader2.eecs.umich.edu/eecs482/project3/vm_pager.h

3/8/22, 8:10 AM Project 3 -- memory manager

https://grader2.eecs.umich.edu/eecs482/project3/ 14/27

 * ***

 *

 * Physical memory pages are numbered from 0 to (memory_pages-1), where

 * memory_pages is the parameter passed in vm_init().

 *

 * Your pager accesses the data in physical memory through the variable

 * vm_physmem, e.g., ((char *)vm_physmem)[5] is byte 5 in physical memory.

 */

extern void* const vm_physmem;

Physical memory is structured as a contiguous collection of M pages, numbered
from 0 to M-1. M

is settable through the -m option when you run the
pager (e.g., by running pager -m 4). The
minimum number of
physical pages is 4, the maximum is 1024, and the default is 4. Your pager

can access the data in physical memory via the array vm_physmem .

Swap space is structured as a contiguous collection of S blocks, numbered
from 0 to S-1. S is

settable through the -s option when you run the
pager (e.g., by running pager -s 256). The
minimum number of
swap blocks is 4, the maximum is 1024, and the default is 256.

Regular files and the swap file are accessed via file_read and
 file_write . If filename is

nullptr , these
functions access the swap file; otherwise they access the specified file.
Each call
accesses one disk block, which is the same size as a physical
memory page. file_read copies

data from a file to a physical page;
 file_write copies data from a physical page to a file.

8. Hints

First, draw a finite state machine for the life of a virtual page, from
creation via vm_map to

destruction via vm_destroy .
Consider what events can happen to a page throughout its lifetime,
and what state you will need to keep to represent each state. As you
design the state machine, try

to identify all of the places in the state
machine where work can be deferred or avoided. Most of

this project hinges
on getting this state machine correct.

You may find it helpful to draw two state machines, one for swap-backed
pages and another for

file-backed pages (they are similar but not
identical).

While the state machine is a good way to visualize the lifetime
of a page, writing code that directly

implements each state often
leads to a lot of redundancy. Instead, think about how to factor

common functionality out of similar states. This is important to save
you time in debugging, and

will be a point of emphasis during style
grading.

Approach the project incrementally, rather than all at once. First, write
and test a pager that only

handles swap-backed pages for a
single process. After this is working, then add support for file-

3/8/22, 8:10 AM Project 3 -- memory manager

https://grader2.eecs.umich.edu/eecs482/project3/ 15/27

backed
pages, then add support for fork. However, you'll need to plan ahead for
the notion of

sharing hardware resources among several virtual pages (see
Section 6.3).

This project is much easier to solve if you have clear abstractions
representing the various

entities, with crisp interfaces between
them. It may take several interations to get a "good" set of

these
abstractions and interfaces. Often, you can't really tell that a set
is not "good" until you are

partway through building
it. Therefore, do not be shy about starting from a clean
sheet. In this

project it can often be faster to start over
with a better design than to try to get an existing

architecture to
work. In particular, it is important to have clear notions of
ownership and

responsibility.

Read-faults should typically make the virtual page read-only
(read_enable=1 , write_enable=0),
but not always.

Use assertion statements copiously in your process library to check for
unexpected conditions

generated by bugs in your program. These error checks
are essential in debugging complex

programs because they help flag error
conditions early.

We recommend having exactly one place in your
solution that takes as input the OS' view of a

virtual page and
computes the protection bits in the corresponding hardware page table
entry. In

addition to eliminating redundancy, this can also be very
useful as part of a larger correctness

predicate that
you can use inside an assertion.

For many students, the main intellectual challenge of this project is
thinking in two address

spaces (and therefore trust domains) at the
same time--something that is particularly important

when working with
file backed pages. There is no reason to believe that an application
is well-

behaved in passing arguments to vm_map . It
sometimes takes creativity to think of the ways in
which the
application might be wrong, but your pager must behave correctly in
all cases.

9. Test cases

An integral (and graded) part of writing your pager will be to write a suite of
test cases to validate

any pager. This is common practice in the real
world--software companies maintain a suite of test

cases for their programs and
use this suite to check the program's correctness after a change.

Writing a
comprehensive suite of test cases will deepen your understanding of virtual
memory,

and it will help you a lot as you debug your pager. To construct a
good test suite, trace through

different transition paths that a page can take
through a pager's state machine, then write a short

test case that causes a
page to take each path.

Each test case for the pager will be a short C++ application program that
uses a pager via the

interface described in Section 4
(e.g., the example program in Section 4). Each
test case should

be run without any arguments and should not use any input
files.

3/8/22, 8:10 AM Project 3 -- memory manager

https://grader2.eecs.umich.edu/eecs482/project3/ 16/27

Your test suite may contain up to 30 test cases. Each test case may cause
a correct pager to

generate at most 500 KB of output and must take less
than 60 seconds to run. These limits are

much larger than needed for full
credit. You will submit your suite of test cases together with your

pager,
and we will grade your test suite according to how thoroughly it exercises
a pager. Section

10 describes how your test suite
will be graded.

The name of each test case should start with test and end with
 .cc or .cpp . Each test case
will also specify the number
of physical memory pages to use when running the pager (the -m

option) for
that test case. This parameter will be specified as a dot-separated field
in the name of

the test case file, just before the .cc or
 .cpp filename extension. For example, a test case that

tests
eviction and configures the pager to have 4 memory pages might be named

testEvict.4.cpp . Remember that the minimum number of physical
memory pages is 4 and the

maximum is 1024. Your test cases may assume that
 vm_init is called with swap_blocks=256.

Your test cases may assume that the pager runs in a directory that has
the following files:

lampson83.txt,
data1.bin,
data2.bin,
data3.bin,
data4.bin.
Use these files for test cases that map

pages to files.

Your test suite should test a full range of functionality, even if your
pager does not implement all

functionality. In particular, your test suite
should create and test processes that start with non-

empty arenas, even if
you are only implementing the core version of the pager.

You should test your pager with both single and multiple applications
running. Most of the test

cases you submit need only be a single process,
but some of the buggy pagers used to evaluate

your test suite can only be
exposed by multi-process test cases. Use vm_yield to coordinate
the

order in which processes run.

In writing your test cases, consider whether or not you've
checked every transition in your state

diagram(s). Without liberal assertions, some bugs may not be exposed
without taking some

complete cycles through the state machine.

10. Project logistics

Write your pager in C++17 on Linux. Use g++ 9.1.0 (with -std=c++17)
to compile your programs.

To use g++ 9.1.0 on CAEN computers, put the
following command in your startup file (e.g.,

~/.profile):

module load gcc/9.1.0

You may use any functions included in the standard C++ library, except
the C++ thread facilities.

You should not use any libraries other than the
standard C++ library. Your pager code may be in

https://grader2.eecs.umich.edu/eecs482/project3/lampson83.txt
https://grader2.eecs.umich.edu/eecs482/project3/data1.bin
https://grader2.eecs.umich.edu/eecs482/project3/data2.bin
https://grader2.eecs.umich.edu/eecs482/project3/data3.bin
https://grader2.eecs.umich.edu/eecs482/project3/data4.bin

3/8/22, 8:10 AM Project 3 -- memory manager

https://grader2.eecs.umich.edu/eecs482/project3/ 17/27

multiple files. Each file
name must end with .cc , .cpp , or .h and must not
start with test .

This Makefile shows how to compile a pager and an
application that uses the pager (adjust the file

names in the Makefile to
match your own program).

You are required to document your development process by having your
Makefile run

autotag.sh each time it
compiles your pager (see Makefile above). autotag.sh creates a git tag

for a compilation,
which helps the instructors better understand your development process.

autotag.sh also configures your local git
repo to include these tags when you run " git push ".
To use it,
download autotag.sh and set its execute
permission bit (run " chmod +x
autotag.sh "). If you have several
local git repos, be sure to push to github from the same repo in

which you
compiled your pager.

Here's how to run your pager and an application.

1. Start the pager. The infrastructure will print a message saying
 Pager started with #
physical memory pages , where #
refers to the number of physical memory pages.

2. After the pager has printed the Pager started message, run
one or more application

processes from a different terminal window on the
same computer. These application

processes will interact with the pager
via the infrastructure. The same user must run the

pager and the
applications that use the pager, and all processes must run on the same

computer.

If you want to run your application in gdb , you will probably find
it useful to direct gdb to ignore

SIGUSR1 and
 SIGSEGV events (used by the project infrastructure). To do this,
use the following

command in gdb . Note that this only applies when
you're running an application (not the pager)
in gdb :

handle SIGUSR1 nostop noprint

handle SIGSEGV nostop noprint

We have created a private github
repository for your group (eecs482/<group>.3), where
<group> is the sorted, dot-separated list of your group members'
uniqnames. Initialize your local

repository by cloning the (empty)
repository from github, e.g.,

git clone git@github.com:eecs482/uniqnameA.uniqnameB.3

11. Grading, auto-grading, and formatting

https://grader2.eecs.umich.edu/eecs482/project3/Makefile
https://grader2.eecs.umich.edu/eecs482/project3/autotag.sh
https://grader2.eecs.umich.edu/eecs482/project3/autotag.sh
https://grader2.eecs.umich.edu/eecs482/project3/autotag.sh
https://grader2.eecs.umich.edu/eecs482/project3/autotag.sh
https://github.com/eecs482

3/8/22, 8:10 AM Project 3 -- memory manager

https://grader2.eecs.umich.edu/eecs482/project3/ 18/27

To help you validate your programs, your submissions will be graded
automatically, and the results

will be provided to you. You may then
continue to work on the project and re-submit. The results

from the
auto-grader will not be very illuminating; they won't tell you where your
problem is or

give you the test programs. The main purpose of the auto-grader
is to help you know to keep

working on your project (rather than thinking it's
perfect and ending up with a 0). The best way to

debug your program is to
generate your own test cases, figure out the correct answers, and

compare your
program's output to the correct answers. This is also one of the best ways to
learn

the concepts in the project.

Hint: here is a (very rough) categorization of some of the test cases used
by the auto-grader.

1-8,21-24,32-39: swap-backed pages; processes start with empty arenas

0,9-20,25-31,53-62,70: swap and file-backed pages; processes start with empty arenas

40-52: swap-backed pages; processes may start with non-empty arenas

63-69: swap and file-backed pages; processes may start with non-empty arenas

The student suite of test cases will be graded according to how thoroughly they
test a pager. We

will judge thoroughness of the test suite by how well it
exposes potential bugs in a pager. The

auto-grader will first run a test case
with a correct pager and generate the correct output from the

pager
(on stdout , i.e., the stream used by cout) for this test
case. The auto-grader will then run
the test case with a set of buggy
pagers. A test case exposes a buggy pager by causing the

buggy pager to
generate output (on stdout) that differs from the correct output.
The test suite is

graded based on how many of the buggy pagers were exposed
by at least one test case. This is

known as mutation testing in
the research literature on automated testing.

You may submit your program as many times as you like, and all submissions
will be graded and

cataloged. We will use your highest-scoring submission,
with ties broken in favor of the later

submission. If any group member is
in EECS 498-002, your highest-scoring submission will be

chosen using a
(2/3,1/3) weighted average of your core and advanced scores.

You must recompile and git push at least once between submissions.

The auto-grader will provide feedback for the first submission of each day,
plus 3 bonus

submissions over the duration of this project. Bonus
submissions will be used automatically--any

submission you make after the
first one of that day will use one of your bonus submissions. After

your 3
bonus submissions are used up, the system will continue to provide feedback
for the first

submission of each day. See the FAQ for why we use this policy.

Because your programs will be auto-graded, you must be careful to follow the
exact rules in the

project description. In particular:

Your pager code should not print any output. The pager infrastructure
prints messages to

help you debug (and to allow the auto-grader to
understand what the pager is doing).

https://grader2.eecs.umich.edu/eecs482/faq.html#limit

3/8/22, 8:10 AM Project 3 -- memory manager

https://grader2.eecs.umich.edu/eecs482/project3/ 19/27

Do not modify the header files provided in this handout.

In addition to the auto-grader's evaluation of your program's correctness, a
human grader will

evaluate your program on issues such as
documentation, coding style, the efficiency, brevity, and

understandability of your code, compiler warnings, etc..
Although your pager is being run with a

small number of pages, disk blocks,
and processes, your algorithms and data structures should

be optimized for
larger numbers.
Your final score will be the
product of the hand-graded score

(between 1-1.12) and the auto-grader score.

12. Turning in the project

Submit
the following files for your pager:

C++ program for your pager. File names should end in .cc ,
 .cpp , or .h and must not start

with test . Do
not submit the files provided in this handout.

Suite of test cases. Each test case should be in a single file.
File names must follow the

format described in Section 8.

Each person should also describe the contributions of each team member
using the following web

form.

The official time of submission for your project will be the time of your
last submission.

Submissions after the due date will automatically use up your late days; if you have no late days

left, late submissions will not be counted for you (though they may still count for other members

of your group, if they have more late days available).

13. Files included in this handout (zip file)

libvm_app.o

libvm_pager.o

vm_app.h

vm_pager.h

vm_arena.h

lampson83.txt

data1.bin

data2.bin

data3.bin

data4.bin

autotag.sh

https://grader2.eecs.umich.edu/eecs482/submit.php?3
https://grader2.eecs.umich.edu/eecs482/peer.php?peer3
https://grader2.eecs.umich.edu/eecs482/project3/handout.zip
https://grader2.eecs.umich.edu/eecs482/project3/libvm_app.o
https://grader2.eecs.umich.edu/eecs482/project3/libvm_pager.o
https://grader2.eecs.umich.edu/eecs482/project3/vm_app.h
https://grader2.eecs.umich.edu/eecs482/project3/vm_pager.h
https://grader2.eecs.umich.edu/eecs482/project3/vm_arena.h
https://grader2.eecs.umich.edu/eecs482/project3/lampson83.txt
https://grader2.eecs.umich.edu/eecs482/project3/data1.bin
https://grader2.eecs.umich.edu/eecs482/project3/data2.bin
https://grader2.eecs.umich.edu/eecs482/project3/data3.bin
https://grader2.eecs.umich.edu/eecs482/project3/data4.bin
https://grader2.eecs.umich.edu/eecs482/project3/autotag.sh

3/8/22, 8:10 AM Project 3 -- memory manager

https://grader2.eecs.umich.edu/eecs482/project3/ 20/27

Makefile

14. Experimental platforms

The files provided in this handout were compiled on RHEL 7. They should
work on most other

Linux distributions (e.g., Ubuntu) and on Windows
Subsystem for Linux (WSL), but these are not

officially supported.

We also provide an experimental version of the infrastructure
for students who want to develop on

MacOS (10.14 or later, including experimental support for ARM-based Macs). If you are developing

on MacOS:

Use libvm_app_macos.o
instead of libvm_app.o

Use libvm_pager_macos.o
instead of libvm_pager.o

Add -D_XOPEN_SOURCE to the compilation flags.

https://grader2.eecs.umich.edu/eecs482/project3/Makefile
https://grader2.eecs.umich.edu/eecs482/project3/macos/libvm_app_macos.o
https://grader2.eecs.umich.edu/eecs482/project3/libvm_app.o
https://grader2.eecs.umich.edu/eecs482/project3/macos/libvm_pager_macos.o
https://grader2.eecs.umich.edu/eecs482/project3/libvm_pager.o

3/8/22, 8:10 AM Project 3 -- memory manager

https://grader2.eecs.umich.edu/eecs482/project3/ 21/27

3/8/22, 8:10 AM Project 3 -- memory manager

https://grader2.eecs.umich.edu/eecs482/project3/ 22/27

3/8/22, 8:10 AM Project 3 -- memory manager

https://grader2.eecs.umich.edu/eecs482/project3/ 23/27

3/8/22, 8:10 AM Project 3 -- memory manager

https://grader2.eecs.umich.edu/eecs482/project3/ 24/27

3/8/22, 8:10 AM Project 3 -- memory manager

https://grader2.eecs.umich.edu/eecs482/project3/ 25/27

3/8/22, 8:10 AM Project 3 -- memory manager

https://grader2.eecs.umich.edu/eecs482/project3/ 26/27

3/8/22, 8:10 AM Project 3 -- memory manager

https://grader2.eecs.umich.edu/eecs482/project3/ 27/27

