Assignment 2: Fithess Center

Management System — Version 2.0
Data Structures (CS-UH 1050) — Spring 2022

1 Code of Conduct

All assignments are graded, meaning we expect you to adhere to the academic integrity standards
of NYU Abu Dhabi. To avoid any confusion regarding this, we will briefly state what is and isn’t
allowed when working on an assignment.

Any documents and program code that you submit must be fully written by yourself. You can
discuss your work with fellow students, as long as these discussions are restricted to general
solution techniques, without sharing the overall or specific algorithms. Put differently, these
discussions should not be about concrete code you are writing, nor about specific set of steps or
results you wish to submit. When discussing an assignment with others, this should never lead to
you possessing the complete or partial solution of others, regardless of whether the solution is in
paper or digital form, and independent of who made the solution, meaning you are also not
allowed to possess solutions by someone from a different year or course, by someone from
another university, or code from the Internet, etc. This also implies that there is never a valid
reason to share your code with fellow students, and that there is no valid reason to publish
your code online in any form. Every student is responsible for the work they submit. If there is any
doubt during the grading about whether a student created the assignment themselves (e.g., if the
solution matches that of others), the suspected violations will be reported to the academic
administration _according _to the policies _of NYU Abu Dhabi (see
https://students.nyuad.nyu.edu/campus-life/community-standards/policies/academic-integrity/)
under the integrity review process.

2 Introduction

In this assignment, you will develop a new version of the Fitness Center Management system,
which is accessible by administrative staff and members. It stores and manages the fithess
classes at the center. An admin can mainly add/delete fitness classes, and register a member.
On the other hand, a member can mainly book a spot in a class, and cancel a booking.

You are supposed to create a program utilizing the concepts of object-oriented programming
(OOP) discussed in class (this may include: Classes, inheritance, templates, and error handling).

Note: You are not allowed to use any built-in STL data structures such as List, Vector, etc.


https://students.nyuad.nyu.edu/campus-life/community-standards/policies/academic-integrity/
https://students.nyuad.nyu.edu/campus-life/community-standards/policies/academic-integrity/
https://students.nyuad.nyu.edu/campus-life/community-standards/policies/academic-integrity/

3 Implementation

Initialization:

1. Atthe beginning, the latest system files are to be loaded:
a) Admins.txt
b) Members.ixt
c) FitnessClasses.txt

2. The system should have at least the following classes defined with their main attributes:
a) Admin Class — Admin ID, First name, Last name, Username, Password.
b) Member Class — Member ID, First name, Last name, Username, Password.
c) FitnessClass Class — Class ID, Class Name, Class date, Class time, Maximum
capacity, Room number, List of members.

o The list of members should be implemented as a linked list-based stack of
member IDs.

Main Operations:

1. The program should print out a welcome message and ask the user to identify themselves
either as an administrative staff or as a member. Figure 1 shows an example illustration of
how the expected user interface should look like and how the different operations should
be invoked. Refrain from asking the user to enter a long input to invoke a task; a number
from the list should suffice.

2. The system will ask the user to log in by providing their credentials (username and
password). If the credentials are valid, the corresponding (terminal) interface will appear
with the list of all possible actions they can choose from with respect to their category.

a) Ifinvalid credentials are provided, a message should appear asking the user to re-
enter their credentials.
b) Only registered members can log in to the system.

N N FMC — out — 80x24

Welcome to the fitness management system!

Please enter the category of your account before logging in: [admin/member]
admin

Please enter your username:

adminl

Please enter your password:

admini

You have logged in successfully!

The list of available operations for Admins:
Register a new Admin
Register a new member
View the list of members
Add a fitness class
Delete a fitness class
Update the details of a fitness class
Update the capacity of a fitness class
Split a fitness class into two classes
View the classes With vacancies

10) Logout

11) Quit the program

Enter the number of the required action: [1-11]

i

Figure 1: Terminal based User Interface



10.

login (username, password) : Any registered user should be able to login by entering
a valid set of username and password, with respect to their category.

registerMember (firstname, lastname): An admin should be able to register a
member in the system by providing the member’s first name and the last name. The
member ID, username and password of the new member should be generated
automatically as follows:

a) Member ID: a randomly generated number of 4 digits. You need to make sure the
generated ID is unique. (Hint: you may use the rand() method from cstdlib (sodlib.h)
headerfile, e.g. int pw = rand()%100; //pw in the range 0 to 99)

b) Username: lowercase the first name and concatenate it with the member ID.

c) Password: lowercase the last name and concatenate it with another randomly
generated number of 4 digits.

registerAdmin (firstname, lastname): An admin should be able to register

another admin in the system by providing the admin’s first name and the last name. The

admin ID, username and password of the new member should be generated automatically

as follows:

a) Admin ID: a randomly generated number of 4 digits. You need to make sure the
generated ID is unique.

b) Username: lowercase the first name and concatenate it with the admin ID.

c) Password: lowercase the last name and concatenate it with another randomly
generated number of 4 digits.

viewMemberList () : An admin should be able to view the current list of members in the
system. For each member on the list, display thelmember ID, First name and Last hame.

addFitnessClass (..) : An admin should be able to add a new fitness class, which is
initially with an empty list of members, by providing the following details:

Class ID, Class Name, Class date, Class time, Maximum capacity (default of 10), Room
number

deleteFitnessClass (class_id) : Anadmin should be able to delete a fitness
class by providing its ID.

updateClassDetails (class_id) : An admin should be able to update a class
assigned room/date/time by providing the class ID. The user should be able to choose
what data member to update. A single data member is to be updated with every call of
this method.

changeClassCapacity(class_id, new_cap) : An admin should be able to
change the capacity of a class by providing the class ID and the updated value (the min
and max capacity to assign are 5 and 15, respectively).(Ifthe class is currently at full
capacity and the new capacity is less than the current capacity by n spots, then the last n
members in registration will be removed from the list of members for that class.


Aibar Talip

Aibar Talip

Aibar Talip

Aibar Talip

Aibar Talip

Aibar Talip

Aibar Talip

Aibar Talip

Aibar Talip


11. splitClass(class_id, cap): Anadmin should be able to split an existing class
(identified by its ID) into two classes.

a) The capacity of the two resulting classes can be provided by the admin. If there is no
value provided by the admin for the capacity, then the default capacity (10) will be
assigned as the capacity for both classes.

b) One of the classes will have the original information of the class to be split, while the
other one will have a new ID, and may have different time and date if the admin
choses to, but the class name will remain the same.

¢) If the original class has some registered members and the new assigned capacity is
less than the number of registered members by n spots, then the last n members in
registration will be moved to the second class.

12.bookAClass (class_id) : A member should be able to book a spot in a class, if the
maximum capacity has not been reached yet, by providing the class ID.
a) As a result, the member will be added to the list of members of that class.

13. viewClassesWithVacancies () : Any user should be able to view the list of classes
that are not yet full. For each class in the list, display all the class information, except for
the class capacity and the list of members.

14. viewBookingList () : A member should be able to view a list of their current bookings.
For each booking on the list, display class nhame, date, time and room number.

15. cancelBooking (class_id) : A member should be able to cancel a booking by
providing the class ID. The class’s list of members should be updated accordingly.

16. logout () : Any user should be able to logout from the program properly. Another user
may login afterwards.

17. quitProgram () : Any user should be able to quit the program properly.
The system should create files with the data recorded during the current session [Bonus
0.5 point 3 - For sorting the instances in every file by their ID attribute]:

a) Thelist of classes should be saved in a “FitnessClasses.txt” file. For each class record,
the values of all the data members should be saved, comma separated, as follows
[Class ID, Class Name, Class date, Class time, Maximum capacity, Room number,
List of Members]. The list of members should contain the list of member IDs, e.g.
[5879,4380,9090].

Example of a class record: 1,Boxing, 23-09-21,16:00,10,2,[5879,4380,9090]

b) The list of Admin should be saved in a “Admins.txt” file. For each admin record, the
values of all the data members should be saved, comma separated, [Admin ID, First
name, Last name, Username, Password].

Example of an admin record: 6564 ,Mai,0Oudah,mai6564,oudah8382



c) The list of members should be saved in a “Members.txt” file. For each member record,
the values of all the data members should be saved, comma separated [Member ID,
First name, Last name, Username, Password].

Example of a member record: 5879, Jones,Ray, jones5879, ray8422

You have to use linked lists to store/contain the instances created from each class in any
open session of the program.

The system should ask for the relevant information needed to be provided by the user for
each of the aforementioned operations.

You can add more classes/operations as you see fit.
The system should handle errors, missing and invalid input.

The system should print out a message indicating that an operation was completed
successfully.



3 Grading

Description Score
(/20)

- Loading the system files properly. (1 point) 5

- Defining the main classes correctly, with their attributes & methods. (1 point)

- Generating the user IDs and passwords as instructed. (0.5 point)

- Creating the objects/instances from each class correctly. (0.5 point)

- Utilizing linked lists to store the instances of every class. (1 point)

- Implementing the list of members in the Fithessclass class as a stack. (1 point)

Methods to design and implement: login (0.5 point), registerMember (0.5 point), 11

registerAdmin (0.5 point), viewMemberList (0.5 point), addFitnessClass (0.5 point),

deleteFitnessClass (0.5 point), updateClassDetails (1 point), changeClassCapacity

(1 point), splitClass (1 point), bookAClass (1 point), viewClassesWithVacancies

(0.5 point), viewBookingList (1 point), cancelBooking (1 point), logout (0.5 point),

quitProgram (1 point).

Proper implementation of the terminal-based user interface as instructed. 1

Proper error handling of missing and invalid input, etc. 1

Documentation (comprehensive comments on every code block in the program) 1

Submission should be a single zip file that includes *.cpp, *.h and Makefile files 1

[Bonus] For sorting the instances in every system file by their ID attribute. (0.5)

Extra points ({f3)) are used to pad your score up to the maximum score only, but the total

cannot exceed 20 points.

You should solve and work individually on this assignment. The deadline of this assignment is

in 12 days of its release on NYU Brightspace.

You should compress your C++ source files (*.cpp, *.h, makefile) in to a single zip file before

uploading it directly to NYU Brightspace. NO SUBMISSIONS OR RESUBMISSIONS VIA EMAIL

WILL BE ACCEPTED. Note that your program should be implemented in C++ and must be

runnable on the Linux, Unix or macOS operating system.

Late submissions will be accepted only up to 2 days late, afterwards you will receive zero points.

For late submissions, 5% will be deducted from the homework grade per late day.



Aibar Talip


	1 Code of Conduct
	2 Introduction

