
ECE 178 - Embedded Systems
Assignment Three – Input/output and Logic Instructions
Programming

Introduction
The Input/output Peripherals programming, and Logic instructions are a central future in many
embedded applications. It is essential for any embedded system programmer being able to
access and communicate with IO ports. Embedded system logic instructions are also useful for
manipulation of bit strings and for dealing with data at the bit level where only a few bits may
be of special interest. Logic instructions programming are essential in dealing with input/output
tasks. You may need to modify the embedded system that you built in the previous assignment
for the implementation of this assignment. The goal for this assignment is to familiarize yourself
with the fundamental skills needed in embedded programming.

Part One

1. Create an infinite loop that
a. Reads the binary setting of the 5-bit DIP switch on the board (SW0 – SW4)
b. Display the value on the 7-segment display
c. After some delay, display the binary value on the LEDs

Part Two
In this part you will implement a Nios II assembly language program shown. The program
counts the longest string of 1’s in a word of data. For example, if the word of data is
0x103fe00f, then the required result is 9. Compile and load the program. Fix any errors that
you encounter. Once the program is loaded into memory in the computer, single step through

the code to see how the program works.  

.text
 .global _start

 ldw r9, TEST_NUM(r0)
 mov r10, r0
 LOOP: beq r9, r0, end
 srli r11, r9, 0x01
 and r9, r9, r11
 addi r10, r10, 0x01
 br LOOP

 END: br END

 TEST_NUM: .word 0x3fabedef
 .end

Part Three
Perform the following:

1. Take the code in part two which calculates the number of consecutive 1’s and make it
into a subroutine called ONES. Have the subroutine use register r4 to receive the input
data and register r2 for returning the result.

2. Add more words in memory starting from the label TEST_NUM. You can add as many

words as you like, but include at least 10 words. To terminate the list include the word 0
at the end—check for this 0 entry in your main program to determine when all of the
items in the list have been processed.

3. Develop a new main program to call the newly-created subroutine in a loop for every

word of data that you placed in memory. Keep track of the longest string of 1’s in any of
the words, and display this result in the 7-segment when your program completes

execution.  
4. Make sure to use breakpoints or single-stepping in the Monitor Program to observe

what happens each time the ONES subroutine is called.  

Part Four
Also, one might be interested in the longest string of 0’s.

Write a new assembly language program to includes two subroutines; one for finding the
largest string of 1’s and another to find the largest string of 0’s. The program should function as
the following:

1. Longest string of 1’s in a word of data—Display the result into a 7-segment
2. Longest string of 0’s in a word of data—Display the result into another 7-segment

• Display the summation of 1 and 2 on the green LEDs.

Make each calculation in a separate subroutine called ONES, ZEROS, and ALTERNATE. Call each
of these subroutines in the loop that you wrote in Part three, and keep track of the largest
result for each calculation, from your list of data.

Part Five
To detect errors in data communication and processing, an additional bit is sometimes
added to a binary code word to define its parity. Parity may be used with binary numbers
as well as with codes, including ACII for characters, and parity bit may be placed in any
fixed position in the code. Write a program to read a binary number equivalents for 32
through 47 with a parity bit added in the rightmost position. Include an odd parity to the
bytes for each numbers. Numbers with parity bit to be stored in memory at location oddp.

Output the sequences of the parity result at memory location oddp to LEDG to verify the
work.

Supporting Notes
The parallel ports that you implemented in your embedded system are to be connected to the
7- segment displays. Figure below shows how the display segments are connected to the
parallel ports with the ports’ respective memory mapped addresses.

To show each of the numbers from 0 to 9 it is necessary to light up the appropriate display
segments. For example, to show 0 on HEX0 you have to turn on all of the segments except for
the middle one (segment 6). Hence, you would store the bit-pattern (00111111)2 into the

address corresponding to the HEX3 − 0 parallel port to show this result. A subroutine that
produces such bit patterns for 7-segment display in given below.

The parallel ports connected to the seven-segment displays, HEX7 − 0, of the DE2-115.

 //Subroutine to convert the digits from 0 to 9 to be shown on a HEX display.
 //Parameters: r4 = the decimal value of the digit to be displayed
 //Returns: r2 = bit pattern to be written to the HEX display

SEG7_CODE: movia r15, BIT_CODES
  add r15, r15, r4
 ldb r2, (r15)
 ret

BIT_CODES: .byte 0b00111111, 0b00000110, 0b01011011, 0b01001111,
0b01100110
.byte 0b01101101, 0b01111101, 0b00000111, 0b01111111,
0b01100111

 .skip 2 //pad with 2 bytes to maintain word alignment

0x10000020

...

HEX06-0

...

HEX16-0

...

HEX36-0

Address

07 6815 142431 30

0x10000030

...

HEX26-0

1623 22

...

HEX46-0

...

HEX56-0

...

HEX76-0

07 6815 142431 30

...

HEX66-0

1623 22

Data register

Data register

0

1

2

3

4

5 6

Segments

An example of code that shows the contents of registers on the 7-segment displays is illustrated

below. Note that this code uses the DIVIDE subroutine that was discussed earlier. The code in

the figure shows only the steps needed for register r10. Extend the code to display all three

result as specified on the 7-segment displays and LEDs as described above.

 // now display r10 on HEX1-0, r11 on HEX3-2 and r12 on HEX5-4

DISPLAY: movia r8, Insert HEX3-HEX0 base address
 mov r4, r10 //display r10 on HEX1-0
 call DIVIDE //ones digit will be in r2; tens digit in r3
 mov r4, r2 //pass ones digit to SEG7_CODE
 call SEG7_CODE
 mov r14, r2 //save bit code
 mov r4, r3 //retrieve tens digit, pass to SEG7_CODE
 call SEG7_CODE
 slli r2, r2, 8
 or r14, r14, r2
 ···
 code for r11 (not shown)
 …
 stw r14, (r8)
 …
 code for r12 (not shown)

	Introduction
	Part One
	Part Two
	Part Three
	Part Four
	Part Five
	Supporting Notes

