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1. Introduction 
With millions of fans worldwide, the National Basketball Association (NBA) is now one of the 
most popular and successful professional sports leagues. Huge profits have led to the 
superstars in the NBA being paid lavishly: in the 2018-19 season, Steph Curry earned over 37.4 
million and LeBron James made over 35.6 million on the court……..  
  
In our project, a dataset containing the salaries of NBA players from the 2016-17 season is 
used, with other variables such as career statistics, draft picks and physical measurements. 
Based on this dataset, we seek to answer the following popular questions around the NBA:  

1. Is the salary of a player dependent of the position he plays in the game?  
2. Does the salary depend on the height of the player?  
3. Does the salary depend on the draft-pick and draft-year of the player? 
4. Is there a single performance measure that is more important in affecting the salary than 

the others?  
5. ……  

  
This report will cover the data descriptions and analysis using R language. For each of our 
research objectives, we performed statistical analysis and drew conclusions in the most 
appropriate approach, together with explanations and elaborations.  

2. Data Description 
The dataset, titled “NBA Salaries”, is obtained from the online data science community 
data.world. The original data consists of 2 csv data frames, titled “players.csv” and 
“salaries_1985to2018.csv”. The dataset was originally posted on basketball-reference.com, the 
official database partner of the National Basketball Association (NBA), and is open to the public 
for study and research.  
  
Before proceeding to data analysis, we first performed a preliminary data cleaning to ensure 
that:  
- Irrelevant columns are eliminated, e.g. “birthplace” and “highschool”;   
- Players with fewer than 10 games played are treated as unrepresentative anomalies and 

excluded;   
- Redundant information is cut out, e.g. the word “overall” under “draft_pick” column as we 

only need the number for analysis;  
- Only 2016-17 season’s data are included in our dataset 
- ……  
  
After all the preparation, 513 observations (players) with 11 variables are retained for analysis:  

1. Sno: serial number  
2. X_id: player identity, abbreviated player name  
3. AST: career average assists per game 
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4. FGpct: career field goal percentage 
5. PTS: average career point scored per game 
6. TRB: average career rebound per game 
7. height: height of the player 
8. draft_pick: draft-pick position of the player, indicating the perceived value of the player 

before joining NBA 
9. draft_year: draft-pick year of the player, indicating the seniority of the play in NBA 
10. position: primary position played by the player (PG, SG, SF, PF or C) 
11. salary: total salary in US$ of the player for the 2016-17 season 

3  Description and Cleaning of Dataset  
In this section, we shall look into the data in more detail. Each variable is investigated 
individually to look for possible outliers, and/or to perform a transformation to avoid highly 
skewed data.   
 
3.1  Summary statistics for the main variable of interest, salary 

The following plots show the overall distribution of the variable ������.   
 

   
 
It appears that the variable ������ is highly skewed, hence we apply a log-transformation (base 
�) to the variable. The log-transformed data appears to have some outlying values at the left tail. 
Upon further investigation, we notice that some players were on short-term contracts (a few 
weeks) during the season. Therefore, we remove those players whose salary are below 
US$100,000, approximately 4% of the data.  
 
The histogram and boxplot of the log-transformed variable, with the outliers removed are shown 
below with summary statistics. The dataset is now more symmetric and does not have any 
outliers.  
 
We shall proceed to the next section with this trimmed dataset. 
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   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
11.51   14.06   15.02   14.95   15.93   17.25 

 
 
  
3.2  Summary statistics for other variables 

The histogram, the boxplot, the transformation applied and the outliers removed from the 
variables are tabulated in the following sub-sections. 
 
3.2.1  Average career assists per game, ��� 

  

• The log-transfomation 
(base �) is applied 

• 3 zero values of ��� are 
removed. 

 
3.2.2  Career field goal percentage, ����� 

  

• 3 values <= 10 for �����  
are removed. 



6 

 
3.2.3  Average career point scored per game, ��� 

  

• The log-transfomation 
(base �) is applied 

• 2 zero values of ��� are 
removed. 

 
3.2.4  Average career rebound per game, ��� 

  

• The log-transfomation 
(base �) is applied 

• No outlying value of ��� 
is removed. 

  
 
3.2.5  Height of the player, ℎ���ℎ�  

  

• No outlying value of 
ℎ���ℎ� is removed. 
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3.2.6  Draft-pick position of the player, �����_���� 

 

• No outlying value of 
�����_���� is removed. 

• There are 83 players who 
did not enter NBA via 
draft 

• There seems to have 
more players from the 
earlier picks in 2016-17 
season 

 
3.2.7  Draft-pick year of the player, �����_���� 

 

• No outlying value of 
�����_���� is removed. 

• There are 83 players who 
did not enter NBA via 
draft 

• Note: there is no player 
from draft-year 1996 

• There seems to have 
more young players in the 
2016-17 season 

 
3.2.8  Primary position played by the player, �������� 

 

• No outlying value of 
�������� is removed 

• There is no huge 
differences in the number 
of players in the play 
positions  
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3.3 Final Dataset for Analysis 

Based on the above analysis, the dataset is further reduced to 489 observations with the 
suggested transformations. Namely, log-transformation (base �) to be applied to ���, ���, ���, 
and ������. 

4.  Statistical Analysis 
4.1 Correlations between ���(������) and other Continuous Variables 

 
 
Scatter plots and correlation coefficients are useful in studying the possible linear relationships 
between a player’s salary and performance indicators. 
 
From the plots, it appears that ���(������) is more highly correlated to ���(���) and 
���(���) than to other variables.  
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Among the performance indicators and height, there are a few interesting observations from this 
tabulation:  

• ���(���) and ���(���) are quite highly correlated (� = 0.61) 
• ���(���) and ���(���) are positively correlated (� = 0.72) 
• ����� and ���(���) are positively correlated (� = 0.55) 
• ℎ���ℎ� is positively correlated ����� and ���(���) (� = 0.53), but is negatively 

correlated to ���(���) 
 
We shall perform some statistical tests to confirm some of our observations in the next section. 
 
4.2  Statistical Tests 

4.2.1  Relation between ������ and ��������  

In this section we try to answer the question “Is the salary of a player dependent of the position 
he plays in the game?”  
 
An analysis of variance (ANOVA) test will be conducted to determine whether log(salary) is 
different at each play position, since �������� is a categorical variable. The following plot 
illustrated the distributions of log(salary) of the among the play position. 
 

 
 
Looking at the boxplot, we see that the spread of log(salary) are similar for all 5 play positions 
(factor levels). Hence, the ANOVA test is appropriate for testing the equality of the means (��). 
We test, 

��: �� = ��� = ��� = ��� = ���     against     ��: not all �� are equal 
 

             Df Sum Sq Mean Sq F value Pr(>F) 
position      4    8.3   2.074   1.321  0.261 
Residuals   484  760.0   1.570                
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The ANOVA test returns a p-value of 0.261, which shows that the means are not significantly 
different at a significance level of 0.05. Therefore, we conclude that the salary of NBA player is 
independent of the position he plays in the game. 
 
4.2.2  Relation between ������ and ℎ���ℎ� 

In this section we determine whether the salary of NBA player depends on his height. We 
perform a simple linear regression between ���(������) and ℎ���ℎ�.  
 
Although the regression model provides a p-value of 0.0402 which indicates a statistically 
significant relationship between ���(������) and ℎ���ℎ� at 0.05 level of significance, the R-
squared for this model is less than 1%, (R-sq = 0.0086), confirming what we have seen in 
Section 4.1 that the linear correlation between ���(������) and ℎ���ℎ� is only 0.09.  
 
Therefore, we conclude that although the height of NBA player statistically affects his salary, the 
height only explains less than 1% variation in the ���(������). It is not practically significant. 
 

 
Call: 
lm(formula = log(salary) ~ height) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-3.4748 -0.9584  0.0955  1.0482  2.3419  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  12.3322     1.2811   9.626   <2e-16 *** 
height        1.3081     0.6359   2.057   0.0402 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 1.251 on 487 degrees of freedom 
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Multiple R-squared:  0.008614, Adjusted R-squared:  0.006578  
F-statistic: 4.232 on 1 and 487 DF,  p-value: 0.04021 

 
 
 
4.2.3  Relation between ������ and �����_���� 

Most players enter the league through the annual draft in June. Each year, a total of 
approximately 60 players from various backgrounds are drafted. Those who display great 
potential or skill level usually become the “lottery picks”, i.e. top 15 picks. 
 

 
 

 
The scatter plot of ���(������) versus draft-pick position (above left) shows that there is a 
downward trend for the salary as the draft position goes large. However, the plot also shows 
large variation of the salary at each position, and excludes those players who enter NBA not via 
the draft. In order to understand how draft-pick affects the salary, we regroup the draft-pick into 
three categories, based on whether the player is in the lottery picks (Yes or No), and the player 
is not in the draft (N.A.). The boxplot of ���(������) by the new grouping is illustrated (above 
right). The boxplot clearly shows a significant different in the distributions of ���(������) by draft 
category. 
 
To determine the difference in salary between the lottery and non-lottery picks, excluding the 
non-draft group, we use a t-test approach to construct a 95% confidence interval (CI). We first 
determine that the variances of ���(������) are different in the two groups (Yes and No), p-
value approximately 0.0037. Hence, a Welch two-sample t-test is used to constructed a 95% 
confidence interval for the difference in mean ���(������), 95% CI: [0.6203 1.0323]. This CI in 
log-scale translates into a 95% CI for the ratio in geometric means of the player’s salary 
between lottery and non-lottery picks of [1.86, 2.81]. 
 
 
> var.test(log(salary[lottery=="Yes"]), log(salary[lottery=="No"])) 
 
 F test to compare two variances 
 
data:  log(salary[lottery == "Yes"]) and log(salary[lottery == "No"]) 
F = 0.65705, num df = 172, denom df = 233, p-value = 
0.003702 
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alternative hypothesis: true ratio of variances is not equal to 1 
95 percent confidence interval: 
 0.4983400 0.8714897 
sample estimates: 
ratio of variances  
         0.6570531  
 
> t.test(log(salary[lottery=="Yes"]), log(salary[lottery=="No"]), var.equal
=FALSE) 
 
 Welch Two Sample t-test 
 
data:  log(salary[lottery == "Yes"]) and log(salary[lottery == "No"]) 
t = 7.8858, df = 401.54, p-value = 2.984e-14 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 0.6203142 1.0323051 
sample estimates: 
mean of x mean of y  
 15.63393  14.80762  

 
 
Overall, we conclude that the player’s salary depends very on whether the player is in the lottery 
picks, and whether the player enter NBA via the draft. 
 
4.2.4  Relation between ������ and �����_���� 

The �����_���� indicates how longer a player has been in the league, as of 2016. The following 
boxplot by the draft-year appears to suggest that in the first 4 years of entering the league, 
players are receiving less salary than their seniors. In fact, when a player enter the league, his 
pay is determined by a rookie contract that changes year-over-year based on the percentage by 
which the league raises teams’ salary caps. Rookie contracts are guaranteed for the first two 
years, with teams then having the option to extend the contracts in the third and fourth years as 
the player's salary increases exponentially each year. 
 
Hence, we are interested in knowing the difference in salary of the player’s rookie contract and 
his subsequent contracts. We re-categorise the draft-year into two category, rookie contract: 
yes, or No. We have to exclude those who enter the league not via the draft (82 of them), since 
we do not have the data on the year these players entered the league.  
 
The boxplot of ���(������) by rookie contract is plotted below. From the diagrams, it is rather 
straightforward to see that a payroll gap exists between the rookie and non-rookie contracts. We 
conducted further statistical tests to support this observation. 
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> var.test(log(salary[rookie=="Yes"]), log(salary[rookie=="No"])) 
 
 F test to compare two variances 
 
data:  log(salary[rookie == "Yes"]) and log(salary[rookie == "No"]) 
F = 0.57894, num df = 153, denom df = 252, p-value = 0.0002599 
alternative hypothesis: true ratio of variances is not equal to 1 
95 percent confidence interval: 
 0.4375765 0.7737086 
sample estimates: 
ratio of variances  
         0.5789395  
 
> t.test(log(salary[rookie=="Yes"]), log(salary[rookie=="No"]), alterna
tive = "less", var.equal=FALSE) 
 
 Welch Two Sample t-test 
 
data:  log(salary[rookie == "Yes"]) and log(salary[rookie == "No"]) 
t = -12.725, df = 385.28, p-value < 2.2e-16 
alternative hypothesis: true difference in means is less than 0 
95 percent confidence interval: 
     -Inf -1.05236 
sample estimates: 
mean of x mean of y  
 14.40730  15.61632   

 
 
Variance test 
��: Variances of rookie and non-rookie contracts’ ���(������) are equal;  
��: Variances of rookie and non-rookie contracts’ ���(������) are not equal;  
At a significance level of 0.05, we reject the null hypothesis and conclude that the variances of 
the two samples are not equal, since p-value = 0.00026 < 0.05. 
 
T-test  
��:  The mean of log(salary) under rookie contracts is equal to that under non-rookie contracts; 
��:  The mean of log(salary) under rookie contracts is less than that under non-rookie contracts; 
Using a sided t-test with unequal varainces, the p-value is less than 2.2e-16. Since p-value < 
0.05, we reject the null hypothesis at a significance level of 0.05, and conclude that the mean of 
log(salary) under rookie contracts is significantly less than that under non-rookie contracts. 
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According to the results shown above, we conclude that the salaries of the lottery pick players 
are significantly higher than those of the non-lottery pick players. 
 
4.2.5  The single most important performance measure that is affecting the salary?  

In Section 4.1, we have already seen that the performance measure are quite strong correlated 
to ���(������). We now perform a simple linear regression analysis to determine which of the 4 
performance measures could be used model ���(������) in a linear fashion. 
 

���(������) =  �� + �� ∗ � + � 
 
where � could be any one of ���(���), �����, ���(���) or ���(���). The summary of the 
analysis is listed in the table below. 
 
By comparing the R-squared and the residual plot, ���(���) is determined to be the single most 
important performance measure to model the ���(������) using a simple linear model.  
 

Variable 
(�) 

Fitted Model, with Y 
being ���(������) 

p-value R-squared qq-plot of residuals 

���(���) �� =  14.74 + 0.578� <2e-16 0.1436 

 
����� �� =  12.96 + 0.044� 4.23e-06 0.0426 

 
���(���) �� =  12.20 + 1.320� <2e-16 0.3654 
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���(���) �� =  13.51 + 1.177� <2e-16 0.2757 

 
 
 
4.3  Multiple Linear Regression (Optional) 

In this Section, we attempt to build a multiple linear model for log(salary) based on the 4 given 
performance measures, namely ���(���), �����, ���(���) and ���(���).  We use a backward 
elimination method to select the most appropriate model. The result is shown in the R output 
below. 
 
We conclude that ���(���) and ���(���) are the significant measures that could be used to 
modelled ���(������), whilst ���(���) and ����� are not. The fitted model is: 
 

log (������)� =  12.20 + 0.989 ∗ log(���) + 0.561 ∗  log (���) 
 
> model5 =lm(log(salary)~log(AST)+FGpct+log(PTS)+log(TRB)) 
> step(model5, direction="backward") 
Start:  AIC=-23.1 
log(salary) ~ log(AST) + FGpct + log(PTS) + log(TRB) 
 
           Df Sum of Sq    RSS      AIC 
- log(AST)  1     0.072 457.07 -25.0252 
- FGpct     1     0.197 457.19 -24.8911 
<none>                  456.99 -23.1017 
- log(TRB)  1    16.778 473.77  -7.4704 
- log(PTS)  1    40.056 497.05  15.9848 
 
Step:  AIC=-25.03 
log(salary) ~ FGpct + log(PTS) + log(TRB) 
 
           Df Sum of Sq    RSS     AIC 
- FGpct     1     0.158 457.22 -26.856 
<none>                  457.07 -25.025 
- log(TRB)  1    17.267 474.33  -8.892 
- log(PTS)  1    91.804 548.87  62.479 
 
Step:  AIC=-26.86 
log(salary) ~ log(PTS) + log(TRB) 
 
           Df Sum of Sq    RSS     AIC 
<none>                  457.22 -26.856 
- log(TRB)  1    30.304 487.53   2.525 
- log(PTS)  1    99.265 556.49  67.219 
 
Call: 
lm(formula = log(salary) ~ log(PTS) + log(TRB)) 
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Coefficients: 
(Intercept)     log(PTS)     log(TRB)   
    12.2032       0.9885       0.5606 

 
 
 

5  Conclusion and Discussion 
The National Basketball Association (NBA) has a reputation for being the most innovative of the 
major professional North American sports leagues, earning money from a combination of 
television rights, merchandising, ticket sales, and more. In order to sustain its business model, 
teams will have to attract the most talented players based on their performance, and reward 
them with attractive salary. In this report, attempt to answer some of the basic questions related 
to player salary based on 2016-2017 season data, and with very limited number of performance 
measures. 
 
We conclude that: 

• the distribution of salary is independent of the position a player plays 
• the height of a player does not affects the salary that he receives 
• the geometric mean salary depends on whether the player is in the lottery picks  
• among the 4 performance measures, the average number of points scored in a game is 

the most important single measures that will affect the salary. 
• …… 

 
Additionally, we see that average number of points scored and average number of rebounds in 
a game, can be used to model the salary via a linear model. The measures on average number 
of assists and field goal percentage do not seem to have strong correlation with the player 
salary. 
 
Although the results of this report is interesting, it must be noted that this report is only based on 
one single season of data published on the internet. Furthermore, with the advancement of data 
capturing techniques, the NBA has been able to generate more sophisticated performance 
indexes than what we have considered. Deeper and wider analysis of the NBA data, with 
advance analytical techniques would be needed to make a stronger statement about the 
relationship between player’s performance and his salary. 
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6  Appendix 
Listing of code and output from R. 

7  References 
If there is any. 
 
 


