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1. Introduction

With millions of fans worldwide, the National Basketball Association (NBA) is now one of the
most popular and successful professional sports leagues. Huge profits have led to the
superstars in the NBA being paid lavishly: in the 2018-19 season, Steph Curry earned over 37.4
million and LeBron James made over 35.6 million on the court........

In our project, a dataset containing the salaries of NBA players from the 2016-17 season is
used, with other variables such as career statistics, draft picks and physical measurements.
Based on this dataset, we seek to answer the following popular questions around the NBA:

1. Is the salary of a player dependent of the position he plays in the game?

2. Does the salary depend on the height of the player?

3. Does the salary depend on the draft-pick and draft-year of the player?

4. Is there a single performance measure that is more important in affecting the salary than

the others?

This report will cover the data descriptions and analysis using R language. For each of our
research objectives, we performed statistical analysis and drew conclusions in the most
appropriate approach, together with explanations and elaborations.

2. Data Description

The dataset, titled “NBA Salaries”, is obtained from the online data science community
data.world. The original data consists of 2 csv data frames, titled “players.csv” and
“salaries_1985t02018.csv”. The dataset was originally posted on basketball-reference.com, the
official database partner of the National Basketball Association (NBA), and is open to the public
for study and research.

Before proceeding to data analysis, we first performed a preliminary data cleaning to ensure

that:

- Irrelevant columns are eliminated, e.g. “birthplace” and “highschool”;

- Players with fewer than 10 games played are treated as unrepresentative anomalies and
excluded;

- Redundant information is cut out, e.g. the word “overall” under “draft_pick” column as we
only need the number for analysis;

- Only 2016-17 season’s data are included in our dataset

After all the preparation, 513 observations (players) with 11 variables are retained for analysis:
1. Sno: serial number
2. X_id: player identity, abbreviated player name
3. AST: career average assists per game



FGpct: career field goal percentage

PTS: average career point scored per game

TRB: average career rebound per game

height: height of the player

draft_pick: draft-pick position of the player, indicating the perceived value of the player
before joining NBA

9. draft_year: draft-pick year of the player, indicating the seniority of the play in NBA

10. position: primary position played by the player (PG, SG, SF, PF or C)

11. salary: total salary in US$ of the player for the 2016-17 season
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3 Description and Cleaning of Dataset

In this section, we shall look into the data in more detail. Each variable is investigated
individually to look for possible outliers, and/or to perform a transformation to avoid highly
skewed data.

3.1 Summary statistics for the main variable of interest, salary

The following plots show the overall distribution of the variable salary.

Boxplot of log(salary)
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It appears that the variable salary is highly skewed, hence we apply a log-transformation (base
e) to the variable. The log-transformed data appears to have some outlying values at the left tail.
Upon further investigation, we notice that some players were on short-term contracts (a few
weeks) during the season. Therefore, we remove those players whose salary are below
US$100,000, approximately 4% of the data.

The histogram and boxplot of the log-transformed variable, with the outliers removed are shown
below with summary statistics. The dataset is now more symmetric and does not have any

outliers.

We shall proceed to the next section with this timmed dataset.
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Min. 1st Qu. Median Mean 3rd Qu. Max .
11.51 14.06 15.02 14.95 15.93 17.25

3.2 Summary statistics for other variables

The histogram, the boxplot, the transformation applied and the outliers removed from the
variables are tabulated in the following sub-sections.

3.2.1 Average career assists per game, AST

e The log-transfomation
(base e) is applied

e 3 zero values of AST are
removed.

|

3.2.2 Career field goal percentage, FGpct

e 3values <= 10 for FGpct
are removed.




3.2.3 Average career point scored per game, PTS

The log-transfomation
(base e) is applied

2 zero values of PTS are
removed.

3.2.4 Average career rebound per game, TRB

TRB
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The log-transfomation
(base e) is applied

No outlying value of TRB
is removed.

3.2.5 Height of the player, height

No outlying value of
height is removed.




3.2.6 Draft-pick position of the player, draft_pick

Position of Draft-Pick

No outlying value of
draft_pick is removed.
There are 83 players who
did not enter NBA via
draft

There seems to have
more players from the
earlier picks in 2016-17
season

3.2.7 Draft-pick year of the player, draft_year
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No outlying value of
draft_year is removed.
There are 83 players who
did not enter NBA via
draft

Note: there is no player
from draft-year 1996
There seems to have
more young players in the
2016-17 season

3.2.8 Primary position played by the player, position

No outlying value of
position is removed
There is no huge
differences in the number
of players in the play
positions




33 Final Dataset for Analysis

Based on the above analysis, the dataset is further reduced to 489 observations with the
suggested transformations. Namely, log-transformation (base e) to be applied to AST, PTS, TRB,
and salary.

4. Statistical Analysis

4.1 Correlations between log(salary) and other Continuous Variables

Scatter plots and correlation coefficients are useful in studying the possible linear relationships
between a player’s salary and performance indicators.

From the plots, it appears that log(salary) is more highly correlated to log(PTS) and
log(TRB) than to other variables.




Among the performance indicators and height, there are a few interesting observations from this
tabulation:
e log(PTS) and log(TRB) are quite highly correlated (r = 0.61)
e log(PTS) and log(AST) are positively correlated (r = 0.72)
e FGpct and log(TRB) are positively correlated (r = 0.55)
e height is positively correlated FGpct and log(TRB) (r = 0.53), but is negatively
correlated to log (AST)

We shall perform some statistical tests to confirm some of our observations in the next section.

4.2 Statistical Tests
4.2.1 Relation between salary and position

In this section we try to answer the question “Is the salary of a player dependent of the position
he plays in the game?”

An analysis of variance (ANOVA) test will be conducted to determine whether log(salary) is
different at each play position, since position is a categorical variable. The following plot
illustrated the distributions of log(salary) of the among the play position.

Looking at the boxplot, we see that the spread of log(salary) are similar for all 5 play positions
(factor levels). Hence, the ANOVA test is appropriate for testing the equality of the means (y;).
We test,

Hy: U = Upr = Upg = Usp = Usg  against  Hy:notall y; are equal

Df Sum Sq Mean Sq F value Pr(>F)
position 4 8.3 2.074 1.321 0.261
Residuals 484 760.0 1.570




The ANOVA test returns a p-value of 0.261, which shows that the means are not significantly
different at a significance level of 0.05. Therefore, we conclude that the salary of NBA player is
independent of the position he plays in the game.

4.2.2 Relation between salary and height

In this section we determine whether the salary of NBA player depends on his height. We
perform a simple linear regression between log(salary) and height.

Although the regression model provides a p-value of 0.0402 which indicates a statistically
significant relationship between log(salary) and height at 0.05 level of significance, the R-
squared for this model is less than 1%, (R-sq = 0.0086), confirming what we have seen in
Section 4.1 that the linear correlation between log(salary) and height is only 0.09.

Therefore, we conclude that although the height of NBA player statistically affects his salary, the
height only explains less than 1% variation in the log(salary). It is not practically significant.

Call:
Im(formula = Tog(salary) ~ height)
Residuals:

Min 1Q Median 3Q Max

-3.4748 -0.9584 0.0955 1.0482 2.3419

Coefficients:
Estimate Std. Error t value Pr(>|t]|)

(Intercept) 12.3322 1.2811 9.626 <2e-16 ***
height 1.3081 0.6359 2.057 0.0402 *
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 * ’ 1

Residual standard error: 1.251 on 487 degrees of freedom
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Multiple R-squared: 0.008614, Adjusted R-squared: 0.006578
F-statistic: 4.232 on 1 and 487 DF, p-value: 0.04021

4.2.3 Relation between salary and draft_pick

Most players enter the league through the annual draft in June. Each year, a total of
approximately 60 players from various backgrounds are drafted. Those who display great
potential or skill level usually become the “lottery picks”, i.e. top 15 picks.

e

00 fe-

The scatter plot of log(salary) versus draft-pick position (above left) shows that there is a
downward trend for the salary as the draft position goes large. However, the plot also shows
large variation of the salary at each position, and excludes those players who enter NBA not via
the draft. In order to understand how draft-pick affects the salary, we regroup the draft-pick into
three categories, based on whether the player is in the lottery picks (Yes or No), and the player
is not in the draft (N.A.). The boxplot of log(salary) by the new grouping is illustrated (above
right). The boxplot clearly shows a significant different in the distributions of log(salary) by draft
category.

To determine the difference in salary between the lottery and non-lottery picks, excluding the
non-draft group, we use a t-test approach to construct a 95% confidence interval (Cl). We first
determine that the variances of log(salary) are different in the two groups (Yes and No), p-
value approximately 0.0037. Hence, a Welch two-sample t-test is used to constructed a 95%
confidence interval for the difference in mean log(salary), 95% CI: [0.6203 1.0323]. This Cl in
log-scale translates into a 95% CI for the ratio in geometric means of the player’s salary
between lottery and non-lottery picks of [1.86, 2.81].

> var.test(log(salary[lottery=="Yes"]), Tog(salary[lottery=="No"]))

F test to compare two variances

data: Tlog(salary[lottery == "Yes"]) and Tog(salary[lottery == "No"])
g Sog.83705, num df = 172, denom df = 233, p-value =
. 7
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alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.4983400 0.8714897
sample estimates:
ratio of variances
0.6570531

> t.teit(1og(sa1ary[]ottery=="Yes"]), Tog(salary[lottery=="No0"]), var.equal
=FALSE

welch Two Sample t-test

data: Tlog(salary[lottery == "Yes"]) and Tlog(salary[lottery == "No"])
t = 7.8858, df = 401.54, p-value = 2.984e-14
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
0.6203142 1.0323051
sample estimates:
mean of x mean of y
15.63393 14.80762

Overall, we conclude that the player’s salary depends very on whether the player is in the lottery
picks, and whether the player enter NBA via the draft.

4.2.4 Relation between salary and draft_year

The draft_year indicates how longer a player has been in the league, as of 2016. The following
boxplot by the draft-year appears to suggest that in the first 4 years of entering the league,
players are receiving less salary than their seniors. In fact, when a player enter the league, his
pay is determined by a rookie contract that changes year-over-year based on the percentage by
which the league raises teams’ salary caps. Rookie contracts are guaranteed for the first two
years, with teams then having the option to extend the contracts in the third and fourth years as
the player's salary increases exponentially each year.

Hence, we are interested in knowing the difference in salary of the player’s rookie contract and
his subsequent contracts. We re-categorise the draft-year into two category, rookie contract:
yes, or No. We have to exclude those who enter the league not via the draft (82 of them), since
we do not have the data on the year these players entered the league.

The boxplot of log(salary) by rookie contract is plotted below. From the diagrams, it is rather

straightforward to see that a payroll gap exists between the rookie and non-rookie contracts. We
conducted further statistical tests to support this observation.
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> var.test(log(salary[rookie=="Yes"]), log(salary[rookie=="No"]))
F test to compare two variances

data: Tlog(salary[rookie == "Yes"]) and log(salary[rookie == "No"])
F = 0.57894, num df = 153, denom df = 252, p-value = 0.0002599
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.4375765 0.7737086
sample estimates:
ratio of variances

0.5789395

> t.test(log(salary[rookie=="Yes"]), Tog(salary[rookie=="No"]), alterna
tive = "less", var.equal=FALSE)

welch Two Sample t-test

data: Tlog(salary[rookie == "Yes"]) and log(salary[rookie == "No"])
t = -12.725, df = 385.28, p-value < 2.2e-16
alternative hypothesis: true difference in means is Tess than 0
95 percent confidence interval:
-Inf -1.05236

sample estimates:
mean of x mean of y

14.40730 15.61632

Variance test

H,: Variances of rookie and non-rookie contracts’ log(salary) are equal;

H,: Variances of rookie and non-rookie contracts’ log(salary) are not equal;

At a significance level of 0.05, we reject the null hypothesis and conclude that the variances of
the two samples are not equal, since p-value = 0.00026 < 0.05.

T-test

Hy: The mean of log(salary) under rookie contracts is equal to that under non-rookie contracts;
Hy: The mean of log(salary) under rookie contracts is less than that under non-rookie contracts;
Using a sided t-test with unequal varainces, the p-value is less than 2.2e-16. Since p-value <
0.05, we reject the null hypothesis at a significance level of 0.05, and conclude that the mean of
log(salary) under rookie contracts is significantly less than that under non-rookie contracts.
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According to the results shown above, we conclude that the salaries of the lottery pick players
are significantly higher than those of the non-lottery pick players.

4.2.5 The single most important performance measure that is affecting the salary?

In Section 4.1, we have already seen that the performance measure are quite strong correlated
to log(salary). We now perform a simple linear regression analysis to determine which of the 4
performance measures could be used model log(salary) in a linear fashion.

log(salary) = Bo+p1*X +¢

where X could be any one of log(AST), FGpct, log(PTS) or log(TRB). The summary of the
analysis is listed in the table below.

By comparing the R-squared and the residual plot, log(PTS) is determined to be the single most
important performance measure to model the log(salary) using a simple linear model.

Variable Fitted Model, with Y | p-value | R-squared qqg-plot of residuals
(X) being log(salary)
log(AST) | ¥ = 14.74+0.578X | <2e-16 0.1436

FGpct Y = 12.96 + 0.044X | 4.23e-06 0.0426

log(PTS) | ¥ = 12.20 + 1.320X | <2e-16 0.3654
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log(TRB) | ¥ = 13.51+ 1.177X | <2e-16 0.2757

4.3 Multiple Linear Regression (Optional)

In this Section, we attempt to build a multiple linear model for log(salary) based on the 4 given
performance measures, namely log(AST), FGpct, log(PTS) and log(TRB). We use a backward
elimination method to select the most appropriate model. The result is shown in the R output
below.

We conclude that log(PTS) and log(TRB) are the significant measures that could be used to
modelled log(salary), whilst log(AST) and FGpct are not. The fitted model is:

log(salary) = 12.20 + 0.989 * log(PTS) + 0.561 * log(TRB)

> modeT5 =Tm(Tog(salary)~Tog(AST)+FGpct+1og(PTS)+1og(TRB))
> step(model5, direction="backward™)

Start: AIC=-23.1

Tog(salary) ~ 1og(AST) + FGpct + Tog(PTS) + Tog(TRB)

Df Sum of Sq RSS AIC
- Tog(AsT) 1 0.072 457.07 -25.0252
- FGpct 1 0.197 457.19 -24.8911
<hone> 456.99 -23.1017

- log(TRB) 1 16.778 473.77 -7.4704
- log(PTS) 1 40.056 497.05 15.9848

Step: AIC=-25.03
Tog(salary) ~ FGpct + 1log(PTS) + Tog(TRB)

Df sum of Sq RSS AIC
- FGpct 1 0.158 457.22 -26.856
<none> 457.07 -25.025

- log(TRB) 1 17.267 474.33 -8.892
- log(PTS) 1 91.804 548.87 62.479

Step: AIC=-26.86
Tog(salary) ~ 1og(PTS) + 10g(TRB)

Df Sum of Sq RSS AIC
<hone> 457.22 -26.856
- log(TRB) 1 30.304 487.53 2.525
- log(PTS) 1 99.265 556.49 67.219

call:
Im(formula = Tog(salary) ~ 1og(PTS) + Tog(TRB))
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Coefficients:
(Intercept) Tog(PTS) Tog(TRB)
12.2032 0.9885 0.5606

5 Conclusion and Discussion

The National Basketball Association (NBA) has a reputation for being the most innovative of the
major professional North American sports leagues, earning money from a combination of
television rights, merchandising, ticket sales, and more. In order to sustain its business model,
teams will have to attract the most talented players based on their performance, and reward
them with attractive salary. In this report, attempt to answer some of the basic questions related
to player salary based on 2016-2017 season data, and with very limited number of performance
measures.

We conclude that:
o the distribution of salary is independent of the position a player plays
o the height of a player does not affects the salary that he receives
o the geometric mean salary depends on whether the player is in the lottery picks
¢ among the 4 performance measures, the average number of points scored in a game is
the most important single measures that will affect the salary.

Additionally, we see that average number of points scored and average number of rebounds in
a game, can be used to model the salary via a linear model. The measures on average number
of assists and field goal percentage do not seem to have strong correlation with the player
salary.

Although the results of this report is interesting, it must be noted that this report is only based on
one single season of data published on the internet. Furthermore, with the advancement of data
capturing techniques, the NBA has been able to generate more sophisticated performance
indexes than what we have considered. Deeper and wider analysis of the NBA data, with
advance analytical techniques would be needed to make a stronger statement about the
relationship between player’s performance and his salary.
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6 Appendix

Listing of code and output from R.

7 References

If there is any.
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