COSC 2P95 - Lab Exercise 9 — Signals, Mutexes, and Threads

Lab Exercises are uploaded via the Sakai page.
Since you need to submit both sample executions and your source files, package it all up into a .zip to submit.

For your lab task, you wrote a multithreaded application that could do some number-crunching.
Specifically, you computed hash functions.

However, we can do something a little more interesting than that.

Function Optimization

Several mathematical functions take multiple parameters and, for some defined domain, can have widely
varying generated values.

To optimize a function is to find a set of parameters that aims to approximate the global minimum or maximum
(depending on what you're searching for) of that function.

For example, if you wish to minimize a simple function like y=x2, for a domain of -5 < x < 5, there's a clear
global minimum of x=0.

However, several more complicated functions have numerous local minima, and those minima (combined with
a more complicated function) can make it trickier to easily identify the true global minimum.

To some extent, discretization (remember our third lab exercise?) can help us here. However, typical
discretization will scan the entire domain with uniform spacing. Conversely, if we find a potentially good area
within the domain, we'd actually want to further study that area with a far higher precision (possibly ignoring
the rest of the domain entirely).

Naturally, all of this also applies to maximization; it's just the direction that changes.

The Egg Holder function is an interesting one. The generalized formula is scalable for multiple dimensions, and

is written as:
m-—1

flx) = Z [— (i1 + 47)siny |xi4q + x:/2 + 47| — x;siny/|x; — (X141 + 47)]
i=1

However, since we really just want two axes (x and y), we can more simply write it as:

fx,y) ==+ 47)sin(\/| x/2+y+47|) —xsin(y/|x —y — 47])

The domain we'll use is -512 <x,y <+512.

Hill-Climbing
Let's consider a hypothetical local search. A local search is a basic mathematical search that, when presented
with different possible moves in some search space, picks the move that appears to yield an improved outcome.

For example, if we were minimizing y=x?, and our current guess was x=0.2, then two potential new guesses
might be 0.15 or 0.23. Since 0.15 would yield a preferable y value, that is what we would choose. We call it
hill-climbing because, if we were trying to maximize, it would always choose the short-term decision that
offered the highest immediate height.

Hill-climbers are very susceptible to local minima, so you typically need some additional tricks for them to be
useful.

Parallel Hill-Climbers
Since a single hill climber isn't very intelligent, we can achieve better results by allowing multiple hill climbers
to search in parallel. We'll achieve this by assigning a thread to each climber.

Thus, we shall formalize our hill-climbing algorithm as follows:
* We shall have a global concept of “best answer so far”
> This will include the lowest minimum found so far, as well as the x and y that yielded that value

> You may want to initialize this lowest minimum to something artificially high, and leave it to the
climbers to immediately initialize it properly for you

« The user will be presented with a menu, asking for the number of climbers (threads) to run
simultaneously

> You can assume a maximum of 8 climbers/threads (avoid taxing sandcastle while testing)
o If the user selects 0, the program exits

« Each climber has a current position (with corresponding current calculated height)

« Each climber will generate, at each step, 4 possible moves

> The best possible move (i.e. the one that generates the lowest calculated value) is the possible next
move for that climber

> If the generated value would improve on the climber's current calculated height, make the move

= Otherwise, randomize the position of the climber, within the established [-512..+512] domain,
and recalculate its height

* Whenever any climber finds a new global best minimum, it updates the global “best answer so far”
o Of course, this will require some form of mutual exclusion
« When the user presses ctrl+c, execution suspends, and the user is presented with the menu again
o If the user chooses to pick a number of threads to try again, the “global best” thus far is not forgotten

« At the very least, whenever the user presses ctrl+c to suspend, you must show the “global best” height
(and corresponding x and y) thus far. You may wish to also include support for SIGUSR1, to display the
current progress without suspending the search

 Youcanuse std::abs, std::sqgrt,and std: : sin if you include the cmath header
« How you generate your possible moves from a given position will heavily influence the ability of the
climber to improve upon its results
> Consider generating two random modifiers (one for x and one for y), each in the range of [-5.0..5.0],
and adding them to the coordinates. Then, if they've exceeded the bounds (-512..512), then clamp
» In practice, you're very likely to solve this function incredibly quickly. It isn't terribly difficult
(particularly since we're using the variation with only two parameters)

o If you're interested in seeing how much the threading and hill climber actually helps, feel free to
widen to the generalized form of the function, which allows for more dimensions

» Make sure you're careful to use multiple mutexes. You certainly don't want two components printing
simultaneously, and you especially don't want two threads updating the global idea of coordinates and
best calculated value simultaneously!

« You may assume sane input:
* The user will only enter numbers
> The number will be a zero to quit, or a number from one to eight
> You don't need to handle any signals other than SIGINT (and SIGUSR1, if desired)

Requirements for Submission:
For your submission, bundle a sample execution or two along with your source files. Pack it up into a .zip to
submit (through Sakai).

