1. Vazirani, Exercise 2.2

2.2 Consider the following algorithm for the maximum cut problem, based
on the technique of local search. Given a partition of V into sets, the basic
step of the algorithm, called flip, is that of moving a vertex from one side
of the partition to the other. The following algorithm finds a locally optimal
solution under the flip operation, i.e., a solution which cannot be improved
by a single flip.

The algorithm starts with an arbitrary partition of V. While there is a
vertex such that flipping it increases the size of the cut, the algorithm flips
such a vertex. (Observe that a vertex qualifies for a flip if it has more neigh-
bors in its own partition than in the other side.) The algorithm terminates
when no vertex qualifies for a flip. Show that this algorithm terminates in
polynomial time, and achieves an approximation guarantee of 1/2.

2. Vazirani, Exercise 3.1

3.1 The hardness of the Steiner tree problem lies in determining the optimal
subset of Steiner vertices that need to be included in the tree. Show this
by proving that if this set is provided, then the optimal Steiner tree can be
computed in polynomial time.

Hint: Find an MST on the union of this set and the set of required vertices.

3. Vazirani, Exercise 3.3
3.3 Give an approximation factor preserving reduction from the set cover
problem to the following problem, thereby showing that it is unlikely to have
a better approximation guarantee than O(logn).

Problem 3.14 (Directed Steiner tree) G = (V. FE) is a directed graph
with nonnegative edge costs. The vertex set V' is partitioned into two sets,
required and Steiner. One of the required vertices, r, is special. The problem
is to find a minimum cost tree in GG rooted into r that contains all the required
vertices and any subset of the Steiner vertices.

Hint: Construct a three layer graph: layer 1 contains a required vertex
corresponding to each element, layer 2 contains a Steiner vertex corresponding
to each set, and layer 3 contains r.

4, Vazirani, Exercise 4.1.
4.1 Show that Algorithm 4.3 can be used as a subroutine for finding a k-cut
within a factor of 2 —2/k of the minimum k-cut. How many subroutine calls
are needed?



