Specification

For this assignment, you will write a program that will allow a person to play a number
guessing game against the computer. This section specifies the required functionality of
the program. Only a text interface is required for this program; however, more marks
will be gained for a game that is easy to follow with clear information/error messages to

the player.

The aim of Numble Game is for a person and the computer to compete against the other

to correctly guess a hidden number.

A game consists of four rounds. For each round, a number between 1 and 100
(inclusive) is randomly generated and the players (person and computer) take turns to
guess the number. The round ends when the correct guess is given or each player has

had three guesses.

If a player guesses the number correctly then they are awarded points according to how
many attempts were taken to guess the number. If the round ends without either player
guessing correctly then the points are awarded to the player whose last score was

closest to the hidden number.

At the end of the four rounds, the player with the highest cumulative score wins the

game.

Gameplay

Noun (class) Verb (methods)

The Numble Game begins with a message inviting the human player to enter their name.
The name can contain any characters but must be no more than 8 characters in length.
The other player will be the computer. A number with a value from 1 to 100 (inclusive) is
randomly generated but hidden from the players. The player who will have the first turn
at guessing the number is then randomly chosen by the computer. The round then
progresses with the players taking turns until the correct number is guessed. Note that

your program will generate a number guess for the computer player.

The following are the game rules:



e If the number is not guessed correctly then a message is displayed indicating
whether the entered number was higher or lower than the hidden number and
then the other player takes a turn. Note this means that after each turn the range
of possible numbers is reduced.

e If the player enters a number between 1 and 100 but not within the possible
range, then the player is given a warning message but is not given a chance to
re-enter the number.

e |[f the player enters a number less than 1 or greater than 100, then a warning
message is displayed and the player is invited to enter another number (with no
penalty).

e [f the player enters non-numeric characters, then a warning message is displayed
and the player is invited to enter another number (with no penalty).

e |If a player correctly guesses the number then the round ends, points are awarded
to this player according to how many attempts have been made. Note the total
number of attempts includes attempts by both players. The other player scores
zero for the game.

Number of | Score
attempts

1 18

2 12

3 8

4 5

5 3

6 2

e [f the human player enters 999, this indicates that they have decided to abandon
the round. The computer will randomly decide to abandon a round approximately
once in every 20 guesses. If a player decides to abandon the round then the
other player is awarded the points for the number of attempts that have been
made, i.e. if the computer abandons the game after four attempts then the human
player is awarded 5 points for that round. (Hint: to determine if the computer
decides to abandon a round then choose a number between 1 and 20 as the
‘abandon game indicator’. For each round generate a random number between 1
and 20 inclusive. The game is then abandoned if the random number is equal to
the abandon number indicator).

e [f the round ends and no player has guessed the number then the player whose
last guess was closest to the hidden number is awarded a score of 1 point. If the
guesses were equidistant from the hidden number then no score is awarded to
either player.

Program design



Your program should consist of at least three classes: Player, Game and

NumberGenerator. The following two sections give details of these classes.

Player class

The Player class will specify the attributes and behaviours of a player. An object of the

Player class will have the following fields (at least):
Name — the name of the player.

Guess — the last number guessed for the current round
Score — the cumulative game score

The data type of each field must be chosen carefully and you must beable to justify the
choice of the data type of the fields. You may want to include comments in the class to
state any assumptions made. The class must also have a default constructor and a

non-default constructor that accepts a value for the name of the player.

The Player class should also have appropriate accessor and mutator methods for its
fields. Validation of values for fields should also be implemented. You should not allow
an object of class Player to be set to an invalid state. There should be no input from the
terminal or output to the screen. A Player object should also be able to return its state in

the form of a String.

Game class

The Game class will manage the playing of a game. It will have the following fields (at

least):

Player1 (an object of type Player)

Player2 (an object of type Player)

Note that one of these players will be the computer.

The Game class will have methods to manage the playing of the game. These should
include the main() method to start the program and methods for the following

behaviours:



Display a welcome message on the screen.

Request the player to enter their name.

Request the player to enter a number.

Compare the number entered by a player with the hidden number.

Display the result of the attempt at guessing the number.

Display the result for the end of a round, including the score for each player and
the value of the hidden number.

e Display the game result.

NumberGenerator class

An object of the NumberGenerator class will generate a random number from 1 to a

maximum value specified.



