
1

Long Island University
CS 631 and AI 632

1 Pre-sorted	blocks

In many real applications, the arrays we have to sort are made up of already sorted sub-
arrays. It would therefore be interesting to develop a sorting algorithm that is as efficient
as possible taking advantage of this property. Based on this idea, we propose to study
two new iterative sorting algorithms inspired by MERGESORT.

1.1 NEWSORTI

The	principle	is	as	follows.	We	begin	by	seeking	the	maximum	index	i	such	that	the	
sub-array	ALI	i]	is	sorted.	Then	we	iterate	as	follows:	
(a)	We	seek	the	maximum	index	j	such	that	the	sub-array	A	[i+	1	..	j]	is	sorted.	
(b)	We	merge	A[1	.	.	i]	and	A	[i	+1	.	.	j)	(as	does	the	MERGE	function.	(I	will	provide	
reference	to	merge	sort).		
(c)	As	long	as	the	array	is	not	completely	sorted,	we	start	again	in	(b)	by	taking	i	=	j.	
Example:	Consider	the	following	table:	[1,	5,	2,	6,	4,	3,	9].	The	merging	steps	will	be	
as	follows	(the	green	part	is	merged	with	the	red	part	to	give	the	blue	part):

[1,2, 5, 6,4, 3,9)
5,6, 3,9]
[1,2, 3, 4,5, 6,9]

1.2 NEWSORT2

The	principle	is	the	following.	We	first	go	through	the	table	starting	from	the	left	and	doing	
so,	we	cut	it	into	consecutive	blocks,	each

consisting	of	sorted	elements.	Then	we	iterate	as	follows:	
(a)	Merge	each	pair	of	consecutive	sorted	blocks	to	form	a	new	sorted	block	(using	the	MERGE	
function).	If	there	is	an	odd	number	of	blocks,	the	last	one	remains	unchanged.	(b)	We	start	again	as	
long	as	there	is	more	than	one	block.	
Example:	Consider	the	following	table:	1,	5,	2,	6,	4,	3,	9].	The	first	step	identifies	4	consecutive	sorted	
blocks:	[1,	5],	[2,6	,	[4],	and	[3,9	.	The	merging	steps	will	then	be	as	follows	(red	merges	with	blue	to	
give	magenta,	green	merges	with	cyan	to	give	light	blue):

2 Theoretical	analyses	

(a)	Write	in	pseudocode	a	NEWSORT2	function	implementing	the	algorithm	described	above.	You	can	assume	
that	the	MERGE	function	as	defined	in	the	theoretical	course	is	known	and	you	can	also	use	all	the	elementary	
structures	seen	in	the	course	without	redefining	them	

2

(b)	Investigate	the	time	and	space	complexities	of	the	NEWSORTI	and	NEWSORT2	algorithms	in	the	worst	and	
best	case.	Explain	precisely	what	the	worst	and	best	cases	correspond	to.	
(c)	Based	on	the	complexity	analysis,	justify	the	choice	to	focus	on	the	NEWSORT2	algorithm	in	the	
experimental	analysis.	
(d)	Are	these	sorting	algorithms	stable?	Briefly	justify	your	answer.	
(e)	What	is	the	worst-case	complexity	of	NEWSORT2	if	the	array	of	size	n	consists	of	k(k<=n)	pre-sorted	blocks	
of	identical	size?	for	example,	the	following	array	consists	of	4	pre-sorted	blocks	of	size	3:

[5, 6, 7, 1, 8, 9, 2, 3, 11, 12, 15, 16]

3.1 Implementation

(a) Implement the NEWSORT2 algorithm in a NewSort file
(b) Implement the MERGESORT algorithm in a MergeSort file.
(c) Implement the QUICKSORT algorithm with random pivot in a QuickSort file
(d) Implement the HEAPSORT algorithm in a HeapSort file

 All four implementations must respect the sorting interface described in the Sort file.
Each sort must be implemented in its own file

3.2	Running	time	on	random	arrays	
(a)	Let	n	be	the	number	of	data	to	be	sorted	in	an	array.	Empirically	calculate	the	
average	running	time	of	different	algorithms	for	different	values	of	n	(10,	100,	
1,000,	10,000,	100,000,	and	1,000,000)	when	arrays	are	generated	completely	
randomly.	The	average	must	be	obtained	over	a	set	of	20	experiments.	Report	these	
results	in	a	table	in	the	format	given	below

 INSERTIONSORT MERGESORT QUICKSORT HEAPSORT NEWSORT2

10
100
1.000
10.000
100.000
1.000.000

(a) Commentez ces résultats en comparant les algorithmes:

• les uns par rapport aux autres;
• par rapport à leur complexité théorique.

Notes:

3

• Le temps d'exécution est une valeur peu précise qui dépend fortement des
capacités de l'ordinateur mais é

r la même machine.

a) Comment on these results comparing the algorithms:
• one to another;
• in relation to their theoretical complexity.
Notes:
• Create createRandomArray function to generate a random array of size n.
• The execution time is an imprecise value which strongly depends on the capacities of
the computer but also on the state of use of the latter at the time of the experiments. To
limit this effect, you are advised to perform all your measurements sequentially on the
same machine.

3.3 Execution time on pre-sorted block array
a) For an array size n = 5000, empirically calculate the average running time of the
algorithms when the array to be sorted contains k pre-sorted blocks, for increasing values
of k. As for the previous table, thefollowing table shows the average times over 20
experiments.

k INSERTIONSORT MERGESORT QUICKSORT HEAPSORT NEWSORT2
1
20
100
500
1000
5000

Note:
 Create a function createRandomBlockArray to generate a random pre-sorted array
of size n.

(a) Comment on these results by comparing the algorithms against each other.
(b) Conclude on the interest or not of NEWSORT2 compared to other sorting algorithms.

Good Luck!

