

1

CS 340 Final Project Guidelines and Rubric

Overview
The final project will encompass developing a web service using a software stack and implementing an industry-standard interface. Regardless of whether you
choose to pursue application development goals as a pure developer or as a software engineer, creating and reusing software components will be a needed
fundamental skill. Application programming interfaces (APIs) have become an industry-standard design pattern for enabling software component
communication in a stacked development environment. In the final project, you will be taking advantage of and seeing firsthand the abilities of API calls to
create a reusable software service. This service will enable other developers or software engineers to make use of your developed capabilities through an
industry-standard web service API. In expanding your knowledge and use of APIs, you will in turn make use of the MongoDB API service to enable your
application as a specialized information storage and retrieval service.

The project has two milestones, which will be submitted in Modules Four and Five. The final project will be submitted in Module Seven. Note, however, that
the assignments in Modules Two and Three are crucial to building your MongoDB skills. Also note that throughout the course you will be practicing your newly
learned skills on data sets that are different from your final project data set; when you complete your final project, you will demonstrate your mastery of your
practiced final project skills using a new data set. For all of your assignments, make sure you are reviewing and incorporating instructor feedback before
submitting your final project.

In this assignment, you will demonstrate your mastery of the following course outcomes:

• Communicate use of advanced programming technologies and associated programming operations effectively to stakeholders
• Use a higher level programming language for developing within a full stack environment
• Use advanced programming techniques that interface within a full stack environment
• Develop an application that integrates with current and emerging technologies in an effective and efficient manner

Prompt
As a newly hired software engineer for a financial services startup, you are tasked with creating a reporting service for basic stock market securities information.
This reporting service will be used by other software engineers in the company for creating interactive web reports and dashboards.

Knowing that your service needs to be easily accessible, you have chosen to use the RESTful application programming interface (API) web-based protocol. Also
knowing that your startup will more than likely focus in the future on various types of securities other than company stock, you decide to use MongoDB, a
NoSQL document-storage system. MongoDB is supported by many languages, including Java and Python, via driver APIs. And since the RESTful API is already a
part of many web application server frameworks using either Java or Python, you will only need to code and test the uniform resource identifier (URI) paths for
the following functionality:

2

• Enable CRUD (create, read, update, and delete) operations specialized for stock market securities information.
• Select and present specific stock summary information info by a user-derived list of ticker symbols.
• Report a portfolio of five top stocks by a user-derived industry selection.
• Report a portfolio of possible stock investments for a selected company by similar industries.

To verify and test your RESTful web service, you will use a simple command line tool, such as curl, with a set of example URIs. Although the startup is a fast-
moving organization, documentation is still a critical element for communication. Therefore, along with your RESTful API, you will provide user documentation in
the form of explanations and screenshots.

Specifically, the following critical elements must be addressed:

I. Collection Management: In this section, you will create a database and create single or compound indexes. The database data set collections are
preloaded in your final project tool.

A. Utilize the mongoimport tool to create a database named “market” and a collection named “stocks,” loaded with documents from the
stocks.json file. Provide screenshots of the statements and the results of their execution.

B. Assess the need for indexing as you formulate queries and, using the MongoDB shell, create any needed single or compound indexes. Provide
screenshots of the statements and the results of their execution.

C. For all of your screenshots, explain in detail each part of the associated MongoDB statements and their results to internal stakeholders. Be sure
your explanations are logically organized and clearly communicated to meet the needs of the internal stakeholders.

II. Document Manipulation: In this section, you will add, update, and delete documents, making changes to the collection you created in the previous
section. Provide source code in a text file for the functions you will create below.

A. Insert new key-value pairs into documents using appropriate MongoDB statements. Specifically, create a function or method in Python or Java
that will read from a file or standard input stream a value pair stream in JSON notation and insert this document into the stocks collection. You
will also need to create a simple application scaffold for testing your function or method. Provide screenshots of the results of their execution.

B. Update existing documents using appropriate MongoDB statements. Specifically, create a function or method in Python or Java that will update
the document “Volume” key-value pair identified by the string input stock ticker symbol “Ticker” and numerical input “Volume” value of your
choice greater than zero. The function or method will update the document “Volume” key-value pair identified by the given ticker symbol and a
new “Volume” value of your choice greater than zero. You will also need to create a simple main application to call your function. Provide
screenshots of the results of their execution.

C. Delete existing documents using appropriate MongoDB statements. Specifically, create a function or method in Python or Java that will take as
input a stock ticker symbol “Ticker.” The function or method will remove the document identified by the given ticker symbol. For example, use
the ticker symbol “BRLI.” You will also need to create a simple application scaffold for testing your function or method. Provide screenshots of
the results of their execution.

http://snhu-media.snhu.edu/files/course_repository/undergraduate/cs/cs340/cs340_uri_api_examples.xlsx

3

D. For all your screenshots, provide explanations of each part of the associated MongoDB statements and their results. Be sure your explanations
are logically organized and clearly communicated to meet the needs of the internal stakeholders.

III. Document Retrieval: In this section, you will create code to query the collection to retrieve information about the application. Provide source code in a
text file for the functions you will create below.

A. Retrieve documents from collections by using the appropriate find statement arguments.
i. Specifically, create a function or method in Python or Java that will take as inputs numerical values for low and high. The function or

method will find documents for which the “50-Day Simple Moving Average” is between the low and high values and return the count
of the number of documents found. You will also need to create a simple main application to call your function. Provide screenshots
of the results of their execution.

ii. Additionally, create a function or method in Python or Java that will take as input a string. The function or method will find
documents for which the input string matches the document key “Industry” and returns the list of ticker symbols found to match
that industry. For example, use the industry string “Medical Laboratories & Research.” Again, you will also need to create a simple
main application to call your function. Provide screenshots of the results of their execution.

B. Write MongoDB aggregation pipeline statements that transform documents into aggregated results using multiple pipeline stages as
appropriate. Specifically create a function or method in Python or Java that will take as input a string. The function or method will find
documents for which the input string matches the document key “Sector” and returns the total outstanding shares grouped by document key
“Industry.” Examples of sector string inputs are “Healthcare,” “Basic Materials,” and so on. You will also need to create a simple main application
to call your function. Provide screenshots of the results of their execution.

C. For all of your screenshots, provide explanations of each part of the associated MongoDB statements and their results. Be sure your
explanations are logically organized and clearly communicated to meet the needs of the internal stakeholders.

IV. Advanced Programming Project: In this section, you will develop a web service application to implement a RESTful application programming interface

(API) for a MongoDB database. Provide source code in a text file (either .java or .py) for your complete web service application that encompasses all of
the functionality below.

A. Develop a RESTful API using a Python or Java web services framework for a MongoDB collection of stock market summary data, ensuring your
code is functional, reusable, concise, and commented.

B. Enable specific CRUD functionality in a developed RESTful API framework. Use the example URIs linked in the prompt to test and validate your
framework. Provide screenshots of the code and its execution, ensuring your code is functional, reusable, concise, and commented.

C. In your RESTful API, enable the following functionality (advanced querying), ensuring your code is functional, reusable, concise, and commented:
i. Select and present specific stock summary information by a user-derived list of ticker symbols. Provide screenshots of the code and its

execution.
ii. Report a portfolio of five top stocks by a user-derived industry selection. Provide screenshots of the code and its execution.

4

Milestones
Milestone One: Implementing CRUD Operations in Python or Java
In Module Four, you will implement the fundamental operations of create, read, update, and delete (CRUD) in either Python or Java. You will use the language-
specific MongoDB driver to create CRUD functional access to your document collection. This milestone will be graded with the Milestone One Rubric.

Milestone Two: Implementing a Basic RESTful Web Service
In Module Five, you will implement a basic RESTful web service using either Python or Java. You will use the language-specific web services framework to
implement the RESTful service. This milestone will be graded with the Milestone Two Rubric.

Final Submission: RESTful API and User Documentation
In Module Seven, you will submit your final project. It should be a complete, polished artifact containing all of the critical elements of the final project. It should
reflect the incorporation of feedback gained throughout the course. This submission will be graded with the Final Project Rubric.

Final Project Rubric
Guidelines for Submission: Your RESTful API and user documentation will be submitted in two parts. The user documentation (screenshots and explanations)
must be 3 to 5 pages in length and must be written in APA format. Use double spacing, 12-point Times New Roman font, and one-inch margins. You must also
submit your code in either .java or .py format.

Critical Elements Exemplary Proficient Needs Improvement Not Evident Value
Collection

Management: Create
a Database

 Creates database using
appropriate MongoDB
statements and provides
screenshots of the statements
and results of execution (100%)

Creates database using
appropriate MongoDB
statements but does not provide
screenshots, or not all of the
statements are appropriate
(55%)

Does not create collections (0%) 4.75

Collection
Management: Single

or Compound
Indexes

 Creates single or compound
indexes for the collections using
appropriate MongoDB
statements and provides
screenshots of the statements
and results of execution (100%)

Creates single or compound
indexes for the collections but
does not provide screenshots, or
not all of the statements are
appropriate (55%)

Does not create single or
compound indexes (0%)

4.75

5

Collection
Management:

Explanation

Meets “Proficient” criteria and
demonstrates discerning insight
into the needs of the
stakeholders and how best to
communicate with them (100%)

Explains each part of the
associated MongoDB statements
and their results to internal
stakeholders, ensuring
explanations are logically
organized and clearly
communicated to meet the
needs of stakeholders (85%)

Explains each part of the
associated MongoDB statements
and their results to internal
stakeholders, but not all are
logically organized or clearly
communicated to meet the
needs of stakeholders (55%)

Does not explain each part of
the associated MongoDB
statements and their results
(0%)

7.9

Document
Manipulation: Insert

 Inserts new key-value pairs into
documents using appropriate
MongoDB statements and
provides screenshots of the
statements and results of
execution (100%)

Inserts new key-value pairs into
documents but does not provide
screenshots, or not all of the
statements are appropriate
(55%)

Does not insert new key-value
pairs (0%)

4.75

Document
Manipulation:

Update

 Updates existing documents
using appropriate MongoDB
statements and provides
screenshots of the statements
and results of execution (100%)

Updates existing documents but
does not provide screenshots, or
not all of the statements are
appropriate (55%)

Does not update existing
documents (0%)

4.75

Document
Manipulation:

Delete

 Deletes existing documents
using appropriate MongoDB
statements and provides
screenshots of the statements
and results of execution (100%)

Deletes existing documents but
does not provide screenshots, or
not all of the statements are
appropriate (55%)

Does not delete existing
documents (0%)

4.75

Document
Manipulation:
Explanations

Meets “Proficient” criteria and
demonstrates discerning insight
into the needs of the
stakeholders and how best to
communicate with them (100%)

Explains each part of the
associated MongoDB statements
and their results to internal
stakeholders, ensuring
explanations are logically
organized and clearly
communicated to meet the
needs of stakeholders (85%)

Explains each part of the
associated MongoDB statements
and their results to internal
stakeholders, but not all are
logically organized or clearly
communicated to meet the
needs of stakeholders (55%)

Does not explain each part of
the associated MongoDB
statements and their results
(0%)

7.9

6

Document Retrieval:
Find Statement

Arguments:
Numerical Values

 Retrieves documents from
collections using the appropriate
find statement arguments by
creating a function or method
that will take as inputs numerical
values for low and high and
provides screenshots of the
statements and results of
execution (100%)

Retrieves documents from
collections using the appropriate
find statement arguments by
creating a function or method
that will take as inputs numerical
values for low and high, but does
not provide screenshots, or not
all statements are appropriate
(55%)

Does not retrieve documents
(0%)

7.9

Document Retrieval:
Find Statement

Arguments: String

 Retrieves documents from
collections using the appropriate
find statement arguments by
creating a function or method
that will take as input a string,
and provides screenshots of the
statements and results of
execution (100%)

Retrieves documents from
collections using the appropriate
find statement arguments by
creating a function or method
that will take as input a string,
but does not provide
screenshots, or not all
statements are appropriate
(55%)

Does not retrieve documents
(0%)

7.9

Document Retrieval:
Aggregation Pipeline

Statements

 Writes MongoDB aggregation
pipeline statements that
transform documents into
aggregated results using
multiple pipeline stages as
appropriate and provides
screenshots of the statements
and results of execution (100%)

Writes MongoDB aggregation
pipeline statements that
transform documents into
aggregated results using
multiple pipeline stages as
appropriate but does not
provide screenshots, or not all
statements are appropriate
(55%)

Does not write MongoDB
aggregation pipeline statements
(0%)

7.9

Document Retrieval:
Explanations

Meets “Proficient” criteria and
demonstrates discerning insight
into the needs of the
stakeholders and how best to
communicate with them (100%)

Explains each part of the
associated MongoDB statements
and their results to internal
stakeholders, ensuring
explanations are logically
organized and clearly
communicated to meet the
needs of stakeholders (85%)

Explains each part of the
associated MongoDB statements
and their results to internal
stakeholders, but not all are
logically organized or clearly
communicated to meet the
needs of stakeholders (55%)

Does not explain each part of
the associated MongoDB
statements and their results
(0%)

7.9

7

Advanced
Programming

Project: RESTful API

Meets “Proficient” criteria and
develops a RESTful API
demonstrating a sophisticated
use of Python or Java
frameworks and functional,
reusable, concise, and
commented coding practices
(100%)

Develops a RESTful API using a
Python or Java web services
framework for a MongoDB
collection, ensuring code is
functional, reusable, concise,
and commented (85%)

Develops a RESTful API using a
Python or Java web services
framework, but RESTful API is
not functional, reusable, concise,
or commented (55%)

Does not develop a RESTful API
(0%)

5.9

Advanced
Programming
Project: CRUD
Functionality

Meets “Proficient” criteria and
enables CRUD functionality
demonstrating a sophisticated
use of functional, reusable,
concise, and commented coding
practices (100%)

Enables specific CRUD
functionality in developed
RESTful API framework, ensuring
code is functional, reusable,
concise, and commented, uses
URIs to test and validate
framework, and provides
screenshots of the code and its
execution (85%)

Enables specific CRUD
functionality in developed
RESTful API framework but does
not use URIs to test and validate
framework, does not provide
screenshots, or code is not
functional, reusable, concise, or
commented (55%)

Does not enable specific CRUD
functionality (0%)

5.9

Advanced
Programming
Project: Stock

Summary
Information

Meets “Proficient” criteria and
demonstrates a sophisticated
practice of advanced querying
(100%)

Selects and presents specific
stock summary information by a
user-derived list of ticker
symbols and provides
screenshots of the code and its
execution (85%)

Selects and presents specific
stock summary information but
does not provide screenshot, or
query is not appropriate (55%)

Does not select or present
specific stock summary
information (0%)

5.9

Advanced
Programming

Project: Five Top
Stocks

Meets “Proficient” criteria and
demonstrates a sophisticated
practice of advanced querying
(100%)

Reports a portfolio of five top
stocks by a user-derived industry
selection and provides
screenshots of the code and its
execution (85%)

Reports a portfolio of five top
stocks but does not provide
screenshot, or query is not
appropriate (55%)

Does not report a portfolio of
five top stocks (0%)

5.9

Articulation of
Response

Submission is free of errors
related to citations, grammar,
spelling, syntax, and
organization and is presented in
a professional and easy-to-read
format (100%)

Submission has no major errors
related to citations, grammar,
spelling, syntax, or organization
(85%)

Submission has major errors
related to citations, grammar,
spelling, syntax, or organization
that negatively impact
readability and articulation of
main ideas (55%)

Submission has critical errors
related to citations, grammar,
spelling, syntax, or organization
that prevent understanding of
ideas (0%)

5.25

Total 100%

	CS 340 Final Project Guidelines and Rubric
	Overview
	Prompt
	Milestones
	Final Project Rubric

