
Symbolic Execution Concepts
CS6262

Symbolic Execution Concepts

• The examples and concepts are prepared base on
• MITOPENCOURSEWARE
• Computer Systems Security
• Lecture 10 : Symbolic Execution
• Instructor : Armando Solar-Lezama

• https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-858-
computer-systems-security-fall-2014/video-lectures/lecture-10-symbolic-execution/

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-858-computer-systems-security-fall-2014/video-lectures/lecture-10-symbolic-execution/

Sample Program
• Is // target activity could ever
be triggered by any input?
• Is there any (x,y) input tupple make
// target activity point reachable?

Concrete Execution
• foo(4,4);

Concrete Execution
• foo(4,4);

Concrete Execution
• foo(4,4);

Concrete Execution
• foo(4,4);

Concrete Execution
• foo(4,4);
• What does it tell us?

• No activity occurred for x=4 and y=4

• What else?

Concrete Execution
• foo(4,4);
• We don’t know anything about
other executions
• All we learn is // target activity
is not reachable when x=4 and y=4

Concrete Execution
• foo(2,1);

Concrete Execution
• foo(2,1);
• What we learn about the program?

• foo(2,1) will not reach // target activity
• No information about other executions

• How many times to perform
concrete execution to learn about
the behavior of the program?
• How to learn the program behavior?

• Generalize the input space to
understand the program

Symbolic Execution
• Use symbolic values instead
of concrete values

Symbolic Execution
• What could the variable t hold at
the 8th line?

Symbolic Execution
• Depends on which branch is taken

𝒕𝟏 = $𝒙 ∶ 𝒙 > 𝒚 (𝒍𝒊𝒏𝒆 𝟐)
𝒚 ∶ 𝒙 ≤ 𝒚

Symbolic Execution
• Use symbolic values instead
of concrete values

• Does the check on the 8th line hold?

𝒕𝟏 = $𝒙 ∶ 𝒙 > 𝒚 (𝒍𝒊𝒏𝒆 𝟐)
𝒚 ∶ 𝒙 ≤ 𝒚

Symbolic Execution
• Use symbolic values instead
of concrete values

• Current formula
𝒕𝟏 < 𝒙

𝒙 > 𝒚 => 𝒕𝟏 = 𝒙
𝒙 ≤ 𝒚 => 𝒕𝟏 = 𝒚

= ?

Symbolic Execution
• Use symbolic values instead
of concrete values

• Current formula
𝒕𝟏 < 𝒙

𝒙 > 𝒚 => 𝒕𝟏 = 𝒙
𝒙 ≤ 𝒚 => 𝒕𝟏 = 𝒚

= ∅

Symbolic Execution
• // target activity is not reachable

• If x > y holds

• Else

𝒕𝟏 < 𝒙
𝒙 > 𝒚 => 𝒕𝟏 = 𝒙
𝒙 ≤ 𝒚 => 𝒕𝟏 = 𝒚

= ∅

𝑥 > 𝑦 → 𝑡8 = 𝑥 ⊢ 𝑡 < 𝑥 = 𝐹𝐴𝐿𝑆𝐸

𝑥 ≤ 𝑦 → 𝑡8 = 𝑦 → 𝑥 ≤ 𝑡8 ⊢ 𝑡 < 𝑥 = 𝐹𝐴𝐿𝑆𝐸

Symbolic Execution
• No matter what inputs are provided
to the function foo, the program will
not go through // target activity

Symbolic Execution
• What about this program?

Symbolic Execution
• This function can reach the target
whenever x > y

𝒕𝟏 < 𝒙
𝒙 > 𝒚 => 𝒕𝟏 = 𝒙− 𝟏
𝒙 ≤ 𝒚 => 𝒕𝟏 = 𝒚

= {𝒙 > 𝒚}

Control Flow Graph (CFG) t = 0

x > y

t = x t = y

t < x

targetreturn

True False

TrueFalse

Symbolic Execution
t = 0

x > y

t = x t = y

t < y

targetreturn

x, y symbolic, t = 0

x > y

t = x t = y

t < y t < y

TARGET RETURN TARGET RETURN

No more path left to explore in CFG!

True False

TrueFalse

T F

T F T F

Control Flow Graph (CFG)
t = 0

x > y

t = x t = y

t < y

targetreturn

x, y symbolic, t = 0

x > y

t = x t = y

t < y t < y

TARGET RETURN TARGET RETURN
Constraints x > y ∧ t < y where t = x ¬ (x > y) ∧ t < y where t = y

(Path Conditions) = x > y ∧ x < y = ¬ (x > y) ∧ y < y
= FALSE = ¬ (x > y) ∧ FALSE = FALSE

The above conditions are the path constrains for TARGET. These path
constraints show that both paths down to TARGET is not satisfiable.

Hence, the program will never execute TARGET state.

True False

TrueFalse

T F

T F T F

Another Example

Binary Program

• How to perform symbolic execution on binaries?
• Symbolic Execution on 32-bit or 64-bit integers

• More complex arithmetic operations required

More Information

• angr: a concolic execution engine for binaries written in python
• http://angr.io/

• z3: a theorem prover supports Java, C++, python etc.
• https://rise4fun.com/Z3
• https://github.com/Z3Prover/z3

http://angr.io/
https://rise4fun.com/Z3
https://github.com/Z3Prover/z3

angr Tutorial

angr – SimState

• While angr perform symbolic execution, it stores the current state of
the program in the SimState objects.
• SimState is a structure that contains the program’s memory, register

and other information.
• SimState provides interaction with memory and registers. For

example, state.regs offers read, write accesses with the name of each
registers such as state.regs.eip, state.regs.rbx, state.regs.ebx,
state.regs.ebh

angr - SimState

• Creating an empty 64 bit SimState

angr - Bitvectors

• Since, we are dealing with binary files, we don’t deal with regular
integers.
• In binary program, everything becomes bits and sequence of bits.
• A bitvector is a sequence of bits used to perform integer arithmetic

for symbolic execution.

angr - Bitvectors

• Creating some 32 bit bitvector
values
• state.solver.BVV(4,32) will

create 32 bit length bitvector
with value 4
• We can perform arithmetic

operations or comparisons
using the bitvectors

angr – Symbolic Bitvectors

• state.solver.BVS(’x’, 32) will
create a symbolic variable
named x with 32 bit length
• Angr allows us to perform

arithmetic operation or
comparisons using them.

angr - Registers

• State provides accesing the registers through state.regs.register_name
where register_name could be rcx, ecx, cx, ch and cl. Same applies to
the other registers.
• Look at the types of

registers -- they are
bitvectors

angr - Registers
• Look at the length of registers examined below.

• They are all symbolic bitvector because they are not
initizlized yet.

• For cl, ch, cx and ecx they are all part of rcx.

• You can compare the length and the location of cl, ch,
cx, ecx and rcx in angr with the actual architecture
depicted below.

angr - Constraints

• In a CFG, a line like if (x > 10) creates a branch. Please look at the
Symbolic Execution Concepts tutorial.
• Assuming x is a symbolic variable, this will create a <Bool x_5_32 > 4>

when the True branch is taken for the successor state
• For the false branch, negation of a <Bool x_5_32 > 4> will be created.

angr - Constraints

• Adding a constraint to a SimState
• Cl register equals to 11
• state.add_constraints(state.regs.cl == 11)
• state.add_constraints(state.regs.cl == state.solver.BVV(0xb, 8)
• Both constraints are same, since state.solver.BVV(0xb, 8) equals to 11
• You can see their affect is same for SimState in the example below.

Radare2 Tutorial

Radare2

• Launch radare2 with $ r2 ~/shared/payload.exe
• Then type aaa which will analze all (functions + bbs)

Radare2

• afl list all functions

Radare2

• afl lists all the functions which is hard to analyze.
• afl~name grep the list of functions with given name
• afl~attack will list all the functions having attack

Radare2
• You can use linux commands while inside the r2

console such as grep.

• On the right side, you can see all the functions having
the attack vector (afl~send)

• Using those api calls, this linux malware performs
DDoS attacks based on the commands they receive
from C&C server.

• The example on the right side shows how to find all
the attack vectors calling sym.send/sym.sendto

• Now, we have to iterate all the attack functions on the
right. For example, the example below shows three
attack functions, and only one of them is called. Our
focus is the call sym.attack_????? functions.

Radare2
• Let’s analyze the example below.

• axt sym.attack_app_http has only one reference
which is a push instruction. This is not the attack
function we are interested in.

• axt sym_attack_app_cfnull has no reference at all.
This is not the attack function we need to explore.

• axt sym_attack_???? Is one of the functions listed on
the right example, and have call sym.attack_?????
Instruction. That is the function we need to explore
more to determine the target address for the
symbolic execution.

• You need to find 2 attack functions.

Radare2
• After finding the attack function, we can determine the target

address.

• First, step into the function using s sym.attack_????.

• Second, pdf | grep sym.send or pdf | grep sym.sendto to
determine the instruction address

• Third, s address_for_call_sym.send(to) to point to the
instruction which is call sym.send or sym.sendto

• Lastly, print 2 instructions starting with the call
sym.send/sym.sendto instruction

• The address of the instruction which is the successor of call
sym.send(to) is the target address for the symbolic execution.

TARGET
ADDRESS

Radare2

• For more information :
• https://github.com/radare/radare2
• https://www.radare.org/get/THC2018.pdf

https://github.com/radare/radare2
https://www.radare.org/get/THC2018.pdf

Other tools

• You don’t have to use Radare2
• Here some of the tools you may want to use

• objdump
• IDA-Pro (Dissambly tool with GUI) (Free version)

• https://www.hex-rays.com/products/ida/support/download_freeware.shtml
• Cutter (GUI for the radare2)

• https://github.com/radareorg/cutter

https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://github.com/radareorg/cutter

